Efecto de la inclusión de vitaminas en el enriquecimiento del alimento vivo sobre crecimiento y supervivencia de larvas de chita Anisotremus scapularis (Tschudi, 1861)

Autores/as

  • Angélica Castro Instituto del Mar del Perú. Dirección General de Investigaciones en Acuicultura
  • Noemí Cota Instituto del Mar del Perú. Dirección General de Investigaciones en Acuicultura https://orcid.org/0000-0001-8944-8159
  • Melissa Montes Instituto del Mar del Perú. Dirección General de Investigaciones en Acuicultura
  • Lennin Flores Instituto del Mar del Perú. Dirección General de Investigaciones en Acuicultura
  • Wilmer Gaspar Instituto del Mar del Perú. Dirección General de Investigaciones en Acuicultura
  • Lili Carrera Instituto del Mar del Perú. Dirección General de Investigaciones en Acuicultura https://orcid.org/0000-0002-1570-142X

DOI:

https://doi.org/10.53554/boletin.v37i2.374

Palabras clave:

Anisotremus scapularis, Chita, Vitaminas, Larvas, Crecimiento, Alimento vivo

Resumen

El desarrollo larval de peces obtenidos en cautiverio, se encuentra relacionado a nutrición, y búsqueda de técnicas de habituación a dietas comerciales. En tal sentido, la presente investigación está dirigida a conocer el efecto de adicionar vitaminas a un enriquecedor comercial para conocer su influencia en crecimiento, supervivencia, presencia de malformaciones y perfil bioquímico en larvas de Anisotremus scapularis. Se utilizaron 1500 larvas, con 2,19 ± 1,30 mg de peso seco y 3,00 ± 0,23 mm de longitud total inicial, que fueron sembradas en tanques de 100 L a densidad de 10 larvas/L, con una mezcla de microalgas Nannochloropsis oceanica e Isochrysis galbana. Se elaboraron 4 tratamientos; teniendo como base al enriquecedor comercial Selco Spresso®, al que se añadieron las vitaminas: Enriquecedor 100 g (E1), Enriquecedor 99,95 g + 45.000 μg/100g vit A (E2), Enriquecedor 99,63 g + 45.000 μg/100g vit A + 180.000 μg/100g vit C + 136.000 μg/100g vit E (E3) y Enriquecedor 99,63 g + 180.000 μg/100g vit C + 136.000 μg/100g vit E (E4) y fueron añadidos al alimento vivo 6 h antes de ser suministrados a las larvas. La alimentación inició 2 días después de la eclosión (DDE) con Brachionus plicatilis hasta el día 20 DDE y luego con nauplios de artemia hasta el 35 DDE cuando inició el destete, agregando alimento inerte micro particulado comercial hasta el 60 DDE que finalizó el experimento. La calidad del agua del cultivo larval se mantuvo según parámetros del laboratorio: temperatura (19,9 ± 0,71 °C), pH (8,58 ± 0,37), oxígeno disuelto (7,33 ± 0,46 mg/L) y porcentaje de saturación (80,53 ± 4,68%). Al final del experimento, se obtuvieron promedios del peso total 29,22 ± 8,18 mg; longitud total 18,68 ± 8,53 mm; tasa de crecimiento específico 4,36 ± 0,51%g/día, supervivencia 42,78 ± 5,98%, malformaciones 11,72 ± 7,80%, DHA/EPA 0,87 ± 0,09. Los tratamientos no presentaron diferencias significativas (p > 0,05); sin embargo, el tratamiento E2 obtuvo los mejores resultados. Este estudio nos permitió conocer la influencia de las vitaminas en el desarrollo de larvas de Anisotremus scapularis bajo condiciones de laboratorio, asimismo las vitaminas utilizadas deberían servir como base para realizar otros ensayos que nos acerquen a conocer la nutrición larval de chita.

Descargas

Los datos de descargas todavía no están disponibles.

Alternative Metrics

Métricas

Cargando métricas ...

Citas

Abdo-de la Parra, M., Rodríguez-Ibarra, L., CampilloMartínez, F., Velasco-Blanco, G., García-Aguilar, N., Álvarez-Lajonchère, L., Voltolina, D. (2010). Effect of stocking density on survival and growth of larval spotted rose snapper Lutjanus guttatus larvae. Revista de Biología Marina y Oceanografía, 45(1), 141-146.

Adlo, M., Matinfar, A., Sourinezhad, I. (2012). Effects of feeding enriched Artemia franciscana with HUFA, Vitamin C and E on growth performance, survival and stress resistance of Yellowfin seabream larvae. J. Aquacult. Res. Dev., 3, 8.

Amat, F. (2018). Acuicultura Marina: Cría Larvaria de Peces. Ciènciaprop®, 1(4), 1-14.

American Veterinary Medical Association -AVMA. (2020). AVMA Guidelines on euthanasia (Formerly: report of the AVMA Panel on Euthanasia). pp. 39.

Andrades, J., Becerra, J., Fernández-Llebrez, P. (1996). Skeletal deformities in larval, juveniles and adult stages of cultured gilthead sea bream (Sparus aurata L.). Aquaculture, 141, 1-11.

Aristizabal, E. (2006). Desove en cautiverio y calidad de los huevos y larvas del besugo, Pagrus pagrus (L.). INIDEP, Argentina, Informe técnico, 59, 2-13.

Barahona‐Fernandes, M. (1982). Body deformation in hatchery reared European sea bass Dicentrarchus labrax (L). Types, prevalence, and effect on fish survival. Journal of Fish Biology, 21(3), 239-249.

Beraldo, P., Canavese, B. (2011). Recovery of opercular anomalies in gilthead sea bream, Sparus aurata L.: morphological and morphometric analysis. Journal of fish diseases, 34(1), 21-30.

Betancor, M., Caballero, M., Terova, G., Cora, S., Saleh, R., Benitez-Santana, T., Izquierdo, M. (2012). Vitamin C enhances vitamin E status and reduces oxidative stress indicators in sea bass larvae fed high DHA microdiets. Lipids, 47(12), 1193-1207.

Boglione, C., Gagliardi, F., Scardi, M., Cataudella, S. (2001). Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatcheryreared gilthead sea bream (Sparus aurata L., 1758). Aquaculture, 192, 1-22.

Cahu, C., Zambonino-Infante, J. (2001). Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 200(1-2), 161-180.

Carrera, L., Cota, N., Linares, J., Castro, A., Orihuela, L., Silva, E., Montes, M. (2018). Manual para acondicionamiento y reproducción de chita Anisotremus scapularis. Bol Inst Mar Perú, 45(2), 263-276.

Chacon-Guzmán, J., Carvajal-Oses, M., ToledoAgüero, P., Flores-Gatica, H. (2020). Comparison of fatty acids profile of the gonads and eggs of Lutjanus guttatus (Perciformes: Lutjanidae) obtained from wild and captive broodstock. Uniciencia, 34(1), 32-59.

Chatain, B. (1994). Abnormal swimbladder development and lordosis in sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus). Aquaculture, 119(4), 371-379.

Chavez, C. (2013). Avances en el Requerimiento de Vitaminas en Peces Marinos. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Alvarez-González, C. (Eds), Contribuciones Recientes en Alimentación y Nutrición Acuícola, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 507-520.

Chirichigno, F., Cornejo, U. (2001). Catálogo comentado de los peces marinos del Perú. Publicación Especial del Instituto del Mar del Perú, Callao. 500 pp.

Civera-Cerecedo, R., Álvarez-González, C., MoyanoLópez, J. (2004). Nutrición y alimentación de larvas de peces marinos. Avances en Nutrición Acuícola.

Conceição, L., Yúfera, M., Makridis, P., Morais, S., Dinis, M. (2010). Live feeds for early stages of fish rearing. Aquaculture Research, 41(5), 613-640.

Copeman, L., Parrish, C., Brown, J., Harel, M. (2002). Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture, 210(1-4), 285-304.

Cota, N., Castro, A., Carrera, L., Montes, M. (2018). Incidencia de malformaciones esqueléticas en juveniles de chita Anisotremus scapularis bajo condiciones de laboratorio. En LAQUA18. Latin American & Caribbean Aquaculture. VIII Congreso de Acuicultura, Colombia.

Cure, K., Gajardo, G., Coutteau, P. (1996). The effect of DHA/EPA ratio in live feed on the fatty acid composition, survival, growth, and pigmentation of turbot larvae Scophthalmus maximus L., in: Gajardo, G. et al. Improvement of the Commercial Production of Marine Aquaculture Species. Proceedings of a workshop on Fish and Mollusc Larviculture, 57-67.

Darias, M., Lan Chow, Wing., Cahu, J., ZamboniniInfante, D., Mazurais. (2010, b). Double staining protocol for developing European sea bass (Dicentrarchus labrax) larvae. Applied Ichthyology, 26, 280-285.

Dedi, J., Takeuchi, T., Seikai, T., Watanabe, T. (1995). Hypervitaminosis and safe levels of vitamin A for larval flounder Paralichthys olivaceus fed Artemia nauplii. Aquaculture, 133(2), 135-146.

De Oliveira, E., Pinheiro, A., De Oliveira, V., Da Silva, A., De Moraes, M., Rocha, I., De Sousa, R., Costa, F. (2012). Effects of stocking density on the performance of juvenile pirarucu (Arapaima gigas) in cages. Aquaculture, 370-371, 96-101.

Díaz, N. (2004). Efecto de la relación EPA/ADH en larvas de puye (Galaxias maculatus, Jenyns. 1842), cultivadas en diferentes salinidades. Universidad Católica de Temuco. Tesis de grado, Facultad de Acuicultura y Ciencias Veterinarias, Chile. 70 pp.

El-Dahhar, A., Salama, A., El-Greesy, Z., Shaheen, S. (2013). Effect of live food enrichment and temperature on growth performance survival and digestive tract development of grey mullet, Liza ramada larvae. Journal of the Arabian Aquaculture Society, 8(1), 87-104.

Estévez, A., Kanazawa, A. (1996). Fatty acid composition of neural tissues of normally pigmented and unpigmented juveniles of Japanese flounder using rotifer and Artemia enriched in n−3 HUFA. Fisheries Science, 62, 88–93.

Estévez, A., Kaneko, T., Seikai, T., Tagawa, M., Tanaka, M. (2001). ACTH and MSH production in Japanese flounder (Paralichthys olivaceus) larvae fed arachidonic acid-enriched live prey. Aquaculture, 192(2-4), 309-319.

Fernández, E. (2017). Incorporación de vitamina C en dietas larvarias y su implicación en el desarrollo de Solea senegalensis. Revista AquaTIC, (45), 5-6.

Fernández, I., Hontoria, F., Ortiz-Delgado, J., Kotzamanis, Y., Estévez, A., Zambonino-Infante, J., Gisbert, E. (2008). Larval performance and skeletal deformities in farmed gilthead sea bream (Sparus aurata) fed with graded levels of Vitamin A enriched rotifers (Brachionus plicatilis). Aquaculture, 283(1-4), 102-115.

Fernández, I., Pimentel, M., Ortiz-Delgado, J., Hontoria, F., Sarasquete, C., Estévez, A., Gisbert, E. (2009). Effect of dietary vitamin A on Senegalese sole (Solea senegalensis) skeletogenesis and larval quality. Aquaculture, 295(3-4), 250-265.

Folch, J., Lees, M., Stanley, G. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry, 226(1), 497-509.

Gapasin, R., Bombeo, R., Lavens, P., Sorgeloos, P., Nelis, H. (1998). Enrichment of live food with essential fatty acids and vitamin C: effects on milkfish (Chanos chanos) larval performance. Aquaculture, 162(3-4), 269-286.

Gatta, Pirini, Testi, Vignola, Monetti. (2000). The influence of different levels of dietary vitamin E on sea bass Dicentrarchus labrax flesh quality. Aquaculture Nutrition, 6, 47–52. doi: 10.1046/j.1365-2095.2000.00127.x

Galeotti, M., Beraldo, P., De Dominis, S., D’angelo, L., Ballestrazzi, R., Musetti, R., Pinosa, M. (2000). A preliminary histological and ultrastructural study of opercular anomalies in gilthead sea bream larvae (Sparus aurata). Fish Physiology and Biochemistry, 22(2), 151-157.

Gisbert, E., Ortiz-Delgado, J., Sarasquete, C. (2008). Nutritional cellular biomarkers in early life stages of fish. Histology and histopathology, 23, 1525-1539.

González, M., Izquierdo, M., Salhi, M., HernandezCruz, C., Fernandez-Palacios, H. (1995). Dietary vitamin E for Sparus aurata larvae. In: Lavens, P., Jaspers, E., Roelants, Y. Eds. Larvi’95-Fish and Shellfish Larviculture Symposium, Gent, Belgium. European Aquacult. Soc. Special Publ., 24, 239–242.

Hamre, K., Kross, C., Lock, E., Moren, M. (2010). Review article. Roles of lipid-soluble vitamins during ontogeny of marine fish larvae. Aquaculture Research, 41, 745-750.

Henrique, M., Gomes, E., Gouillou-Coustans, M., Oliva-Teles, A., Davies, S. (1998). Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata. Aquaculture, 61(1–4), 415–426.

Hernández, H. L., Teshima, S., Koshio, S., Ishikawa, M., Gallardo-Cigarroa, F., Alam, M., Uyan, O. (2006). Efectos del palmitato de vitamina A, el β-caroteno y el ácido retinoico en el crecimiento e incidencia de deformidades en larvas de pargo rojo Chrysophrys major. Ciencias marinas, 32(1b), 195-204.

Hontoria, F., Crowe, J., Crowe, L., Amat, F. (1994). Potential use of liposomes in larviculture as a delivery system through Artemia nauplii. Aquaculture, 127, 255-264.

Hu, J., Liu, Y., Ma, Z., Qin, J. (2018). Feeding and development of warm water marine fish larvae in early life. In: Emerging Issues in Fish Larvae Research, 275-296.

Ichihara, K., Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of lipid research, 51(3), 635-640.

Izquierdo, M., Fernandez-Palacios, H. (1997). Nutritional requirements of marine fish larvae and broodstock. Cah. Options Mediterr, 22, 243-264.

Izquierdo, M. S., Koven, W. (2011). Lipids. In: Holdt (ed.) Larval fish nutrition. p. 47-81. Wiley-Blackwell, John Wiley and Sons, Chichester, UK.

Izquierdo, M., Watanabe, T., Takeuchi, T., Arawa, T., Kitajima, C. (1989). Optimal EFA levels in artemia to meet the EFA requirements of red seabream (Pargos major) Proc. 3rd int. Symp. Feeding and Nutrition in Fish. Toba (Japan). Pp. 221-232.

Izquierdo, M., Arakawa, T., Takeuchi, R., Haroun, R., Watanabe, T. (1992). Effect of µ-3 HUFA levels in Artemia on growth of larval Japanese flounder (Paralicthys olivaceus). Aquaculture, 105, 73-82.

Izquierdo, M., Domínguez, D., Jiménez, J., Saleh, R., Hernández-Cruz, C., Zamorano, M., Hamre, K. (2018). Interaction between taurine, vitamin E and vitamin C in microdiets for gilthead seabream (Sparus aurata) larvae. Aquaculture, 498, 246-253.

Jiménez-Fernández, E., Ponce, M., Rodríguez-Rúa, A., Manchado, M., Fernández-Díaz, C. (2018). Assessing the role of vitamin C and iron in early larvae stages of Solea senegalensis fed enriched Artemia. Aquaculture, 488, 145-154.

Kolkovski, S., Czesny, S., Yackey, C., Moreau, R., Cihla, F., Mahan, D., Dabrowski, K. (2001). The effect of vitamins C and E in (n-3) highly unsaturated fatty acids-enriched Artemia nauplii on growth, survival, and stress resistance of fresh water walleye Stizostedion vitreum larvae. Aquaculture Nutrition, 6(3), 199.

Koumoundouros, G., Gagliardi, F., Divanach, P., Boglione, C., Cataudella, S., Kentouri, M. (1997). Normal and abnormal osteological development of caudal fin in Sparus aurata L. fry. Aquaculture, 149, 215-226.

Lall, S., Lewis-McCrea, L. (2007). Role of nutrients in skeletal metabolism and pathology in fish an overview. Aquaculture, 267, 3-19.

Lazo, J., Dinis, M., Holt, G., Faulk, C., Arnold, C. (2000). Co-feeding microparticulate diets UIT algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus). Aquaculture, 188, 339-351.

Leith, D., Kaattari, S. (1989). Effects of vitamin nutrition on the immune response of hatchery-reared salmonids. US Department of Energy, Bonneville Power Administration, Division of Fish & Wildlife.

Lugert, V., Thaller, G., Tetens, J., Schulz, C., Krieter, J. (2014). A review on fish growth calculation: multiple functions in fish production and their specific application. Reviews in Aquaculture, 6, 1-13.

Matsuoka, M. (1985). Osteological development in the red sea bream, Pagrus major. Japan J. Ichthiol, 32, 35-51.

Matsuoka, M. (1987). Development of skeletal tissue and skeletal muscle in the red sea bream, Pagrus major. Bull. Seikai Reg. Fish. Res. Lab., 65, 1–102.

Mazurais, D., Glynatsi, N., Darias, M., Christodoulopoulou, S., Cahu, C., ZamboninoInfante, J., Koumoundouros, G. (2009). Optimal levels of dietary vitamin A for reduced deformity incidence during development of European sea bass larvae (Dicentrarchus labrax) depend on malformation type. Aquaculture, 294, 262-270.

Mendo, J., Wosnitza-Mendo, C. (2014). Reconstruction of total marine fisheries catches for Peru: 1950–2010. Vancouver, BC.

Merino-Contreras, M., Sánchez-Morales, F., JiménezBadillo, M., Álvarez-González, C., MeinersMandujano, C., Peña-Marín, E. (2018). Aclimatación en cautiverio del sargo Archosargus probatocephalus (Perciformes: Sparidae). Ecosistemas y recursos agropecuarios, 5(15), 511-521.

Ministerio de la Producción del Perú -PRODUCE. (2017). Anuario Estadístico Pesquero y Acuícola 2017. http://ogeiee.produce.gob.pe/index.php/shortcode/oee-documentos-publicaciones/publicacionesanuales/item/825-anuario-estadistico-pesquero-yacuicola-2017. Reviewed: 1 July 2020.

Montero, D., Marrero, M., Izquierdo, M., Robaina, L., Vergara, J., Tort, L. (1999). Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture, 171(3-4), 269-278.

Monroig, O. (2006). Diseño y optimización de liposomas para su uso como sistema de suministro de nutrientes a larvas de peces marinos. Tesis Doctoral. Universidad de Valencia.

Morel, C., Adriaens, D., Boone, M., De Wolf, T., Van Hoorebeke, L., Sorgeloos, P. (2010). Visualizing mineralization in deformed opercular bones of larval gilthead sea bream (Sparus aurata). Journal of Applied Ichthyology, 26(2), 278-279.

Navarro, J., McEvoy, L., Bell, M., Hontoria, F., Sargent, J. (1997). Effect of different dietary levels of docosahexaenoic acid (DHA, 22: 6 ω3) on the DHA composition of lipid classes in sea bass larvae eyes. Aquaculture International, 5, 509- 516.

Ogata, H., Oku, H. (2001). The effects of dietary retinoic acid on body lipid deposition in juvenile red sea bream (Pagrus major), a preliminary study. Aquaculture, 193(3-4), 271-279.

Paz, B. (2014). Efecto del DHA sobre la expresión de la Δ6-desaturasa durante el desarrollo larvario del pargo amarillo, Lutjanus argentiventris. Tesis de maestro del Centro de Investigaciones Biológicas del Noroeste. México.

Pepín, P. (1995). An analysis of the length-weight relationship of larval fish: limitations of the general allometric model. Fishery Bulletin, 93(2), 419-426.

R Core Team. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing. [https://www.R-project.org/]. Reviewed: 4 July 2020.

Rainuzzo, J., Reitan, K., Olsen, Y. (1997). The significance of lipids at early stages of marine fish: a review. Aquaculture, 155(1-4), 103-115.

Rivera C., Botero M. (2009). Alimento vivo enriquecido con ácidos grasos para el desarrollo larvario de peces. Revista Colombiana de Ciencias Pecuarias, 22(4), 607-618.

Rodríguez, C., Pérez, J., Diaz, M., Izquierdo, M., Fernández-Palacios, H., Lorenzo, A. (1997). Influence of the EPADHA ratio in rotifers on gilthead seabream (Sparus aurata) larval development. Aquaculture, 150(1-2), 77-89.

Sanaye, S., Dhaker, H., Tibile, R., Mhatre, V. (2014). Effect of green water and mixed zooplankton growth and survival in neon tetra, Paracheirodon innesi (Myers, 1936) during larval and early fry rearing. World Academy of Science, Engineering and Technology International, Journal of Bioengineering and Life Sciences, 8(2), 159-163.

Sargent, J., Bell, J., Bell, M., Henderson, R., Tocher, D. (1995). Evolution and roles of (µ-3) polyunsaturated fatty acids in marine organisms in: phospholipids: characterization metabolism and Novel Biological Applications, 248-259, AOCS Press. Champaign ll.

Skiftesvik, A., Browman, H., St-Pierre, J. (2003). Life in green water: the effect of microalgae on the behavior of Atlantic cod (Gadus morhua) larvae. In: Browman, H.I., & Skiftesvik, A.B. (Eds.). The big fish bang. Proceedings of the 26th annual larval fish conference. Institute of Marine Research, Bergen, 97-103.

Teshima, S., Koshio, S., Ishikawa, M., Alam, M., Hernandez, L. (2004). Effects of protein and lipid sources on the growth and survival of red sea bream Pagrus major and Japanese flounder Paralichthys olivaceus receiving micro-bound diets during larval and early juvenile stage. Aquaculture Nutrition, 10(4), 279-287.

Verhaegen, Y., Adriaens, D., De Wolf, T., Dhert, P., Sorgeloos, P. (2007). Deformities in larval gilthead sea bream (Sparus aurata): A qualitative and quantitative analysis using geometric morphometrics. Aquaculture, 268, 156–168.

Verreth, J. (1999). I curso internacional sobre nutrición de larvas de peces. Universidad de Antioquia. Medellín, 15-17.

Villeneuve, L., Gisbert, E., Le Delliou, H., Cahu, C. L., Zambonino-Infante, J. L. (2005). Dietary levels of all-trans retinol affect retinoid nuclear receptor expression and skeletal development in European sea bass larvae. Br. J. Nutr., 93, 1–12.

Vizcaíno-Ochoa, V., Lazo, J., Barón-Sevilla, B., Drawbridge, M. (2010). The effect of dietary docosahexaenoic acid (DHA) on growth, survival and pigmentation of California halibut Paralichthys californicus larvae (Ayres, 1810). Aquaculture, 302(3-4), 228-234.

Wang, J., Shu, X., Wang, W. (2019). Micro-elemental retention in rotifers and their trophic transfer to marine fish larvae: influences of green algae enrichment. Aquaculture, 499, 374-380.

Watanabe, T., Izquierdo, M., Takeuchi, S., Kitajima, C. (1989). Comparison between eicosapentaeoic acid and docosahexaenoic acid in terms of essential fatty acid efficacy in larval red sea bream. Nippon Suisan Gakkaishi, 55, 1635-1640.

Descargas

Publicado

2022-12-31

Cómo citar

Castro, A., Cota, N., Montes, M., Flores, L., Gaspar, W., & Carrera, L. (2022). Efecto de la inclusión de vitaminas en el enriquecimiento del alimento vivo sobre crecimiento y supervivencia de larvas de chita Anisotremus scapularis (Tschudi, 1861). Boletin Instituto Del Mar Del Perú, 37(2), 302–318. https://doi.org/10.53554/boletin.v37i2.374