Efectos de El Niño Costero 2017 sobre la oxigenación, fertilidad y productividad del mar frente a las costas del Perú

Autores/as

  • Jesús Ledesma Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Michelle Graco Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Jorge Tam Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Kevin Díaz Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Tony Anculle Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Walter García Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Avy Bernales Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Daniel Quispe Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Dante Espinoza-Morriberón Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Wilson Carhuapoma Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Dimitri Gutiérrez Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático

DOI:

https://doi.org/10.53554/boletin.v36i2.345

Palabras clave:

Temperatura, Clorofila, El Niño costero, Oxigenación, Afloramiento costero

Resumen

En el presente estudio describimos la asociación entre la variación de la temperatura del mar y los cambios en oxigenación, fertilidad y productividad durante el período 2016 - 2017 frente a la costa peruana. Para ello se utilizaron tanto datos in situ como satelitales, con énfasis frente al norte del Perú. El Niño Costero 2017 ocasionó disminución de las concentraciones de
nutrientes y una reducción significativa del área productiva frente a la costa para el verano, marzo 2017, hasta de 49%  particularmente al norte de Callao (12°S). En cambio, frente a la costa sur los impactos fueron débiles o inclusive se registraron concentraciones elevadas de clorofila-a, posiblemente asociadas a la recuperación más rápida del afloramiento costero en dicha región. Asimismo, durante el verano 2017 se detectaron mayores concentraciones de oxígeno disuelto que lo habitual en la capa superior de la columna de agua y poca variación en la profundidad del límite superior de la zona de mínima de oxígeno.

Descargas

Los datos de descargas todavía no están disponibles.

Alternative Metrics

Métricas

Cargando métricas ...

Citas

Anculle, T, Graco M, Vásquez L, García W, Gutiérrez D. 2021. Contribución de las ondas Kelvin a las anomalías térmicas de las aguas costeras frente al Perú durante El Niño 2015-2016 y El Niño Costero 2017. Bol Inst Mar Perú. 36(2): 362 -384.

Ashok K, Behera S K, Rao S A, Weng H, Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112: C11007. doi:10.1029/2006JC003798

Barber R T, Chavez F P. 1983. Biological consequences of El Niño. Sciences. 222: 1203–1210. doi:10.1126/science.222.4629.1203

Calienes R. 2014. Producción primaria en el ambiente marino en el Pacífico sudeste, Perú, 1960-2000. Bol Inst Mar Perú. 29(1-2): 308.

Calienes R, Guillén O, Lostanau N. 1985. Variabilidad espacio temporal de clorofila, producción primaria y nutrientes frente a la costa peruana. Bol Inst Mar Perú. 10(1): 1-44.

Cane M A. 1983. Oceanographic events during El Niño. Science. 222: 1189–1195.

Capotondi A, Sardeshmukh P D. 2015. Optimal precursors of different types of ENSO events. Geophys. Res. Lett. 42: 9952–9960.

Carr M E, Strub P T, Thomas A C, Blanco J L. 2002. Evolution of 1996-1999 La Niña and El Niño conditions off the western coast of South America: A remote sensing perspective. Journal of Geophysical Research: Oceans. 107(C12): 29–1–29–16. doi:10.1029/2001jc001183

Carrit D, Carpenter J. 1966. Comparation and evaluation of currently y employed modifications of Winkler method for determination dissolved oxygen in sea water. J. Mar. Res. 24: 286-318.

Chavez F P, Messié M. 2009. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83: 80–96.

Chavez F P, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J. 2008. The northern Humboldt Current System: brief history, present status and a view towards the future. Progress in Oceanography. 79: 95–105.

Chavez F P, Strutton P G, Friederich G E, Feely R A, Feldman G C, Foley D G, McPhaden M J. 1999. Biological and chemical response of the equatorial Pacific Ocean to the 1997-98 El Niño. Science. 286: 2126–2131.

Deuser W G, Muller-Karger F E, Evans R H, Brown O B, Esaias W E, Feldman G C. 1990. Surface-ocean color and deep-ocean carbon flux: How close a connection? Deep Sea Res. Part A. 37: 1331– 1343.

Dewitte B, J. Choi J, S.-I. An S-I, S. Thual S. 2012. Vertical structure variability and equatorial waves during central Pacific and eastern Pacific El Niño in a coupled general circulation model. Clim. Dyn. 38: 2275–2289.

Echevin V, Aumont O, Ledesma J, Flores G. 2008. The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A modeling study Prog. Oceanogr. 72: 167–168.

Echevin V, Colas F, Espinoza-Morriberon D, Vasquez L, Anculle T, Gutierrez D. 2018. Forcings and Evolution of the 2017 Coastal El Niño Off Northern Peru and Ecuador. Frontiers in Marine Science. 5: 367. doi:10.3389/fmars.2018.00367

ENFEN. 2012. Definición operacional de los eventos El Niño y La Niña y sus magnitudes en la costa del Perú, Nota Técnica. http://enfen.gob.pe/notas-tecnicas/

ENFEN. 2017. Informe Técnico Extraordinario N°001-2017/ ENFEN EL NIÑO COSTERO 2017. Julio 2017. http://enfen.gob.pe/download/informe-tecnico-el-ninocostero-2017/

Espinoza-Morriberón D, Echevin D, Colas F, Díaz E, Tam J, Anculle T, Ledesma J, Gutiérrez D. 2021. Diferencias entre los impactos en la costa peruana de los eventos ENOS cálidos y El Niño Costero 2017: vientos, afloramiento, productividad y anchoveta. Bol Inst Mar Perú. 36(2): 329 - 348.

Espinoza-Morriberón D, Ledesma J, Colas F, Echevin V, Anculle T, Tam J. 2017. Productividad en el Sistema de Afloramiento Peruano durante El Niño 2015-2016. Inf Inst Mar Perú. Vol. 44(4): 460-466.

Espinoza‐Morriberón D, Echevin V, Colas F, Tam J, Ledesma J, Vásquez L, Graco M. 2017. Impacts of El Niño events on the Peruvian upwelling system productivity. Journal of Geophysical Research: Oceans. 122(7): 5423-5444.

Espinoza-Morriberón D, Echevin V, Colas F, Tam J, Gutierrez D, Graco M, Ledesma J, Quispe-Ccalluari C. 2019. Oxygen variability during ENSO in the Tropical South Eastern Pacific. Front. Mar. Sci. 5: 526. https://doi.org/10.3389/fmars.2018.00526

Farías L, Besoain V, García-Loyola S. 2015. Presence of nitrous oxide hotspots in the coastal upwelling area off central Chile: an analysis of temporal variability based on ten years of a biogeochemical time series. Environ. Res. Lett. 10. http://dx.doi.org/10.1088/1748-9326/10/4/044017

Flores G, Córdova J, Ledesma J, Robles C. 1998. Crucero de evaluación hidroacústica de recursos pelágicos BIC Humboldt 9803-05 de Tumbes a Tacna. Características químicas y de clorofila “a” del mar peruano durante el otoño 1998. Crucero BIC Humboldt 9803-05 de Tumbes a Tacna. Inf Inst Mar Perú. 135: 67-78.

Franz J, Krahmann G, Lavik G, Grasse P, Dittmar T, Riebesell U. 2012. Dynamics and stoichiometry of nutrients and phytoplankton in waters influenced by the oxygen minimum zone in the eastern tropical Pacific. Deep-Sea Res. Part I Oceanogr. Res. Pap. 62: 20–31. doi:10.1016/j.dsr.2011.12.004

Fuenzalida R, Schneider W, Garces J, Bravo L, Lange C. 2009. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. DeepSea Res. II. 56: 992–1003. http://dx.doi.org/10.1016/j.dsr2.2008.11.001

Garreaud R D. 2018. A plausible atmospheric trigger for the 2017 coastal El Niño. Int. J. Climatol. 38: e1296–e1302. doi: 10.1002/joc.5426

Graco M, Correa D, García W, Sarmiento M. 2016. Impactos del ENSO en la biogeoquímica del sistema de afloramiento frente a Perú central, febrero 2013-diciembre 2015. “Generación de Información y Monitoreo del Fenómeno El Niño”. Boletín Trimestral Oceanográfico. 2(1): 2-6.

Graco M, Purca S, Dewitte B, Castro C G, Morón O, Ledesma J, Flores G, Gutiérrez D. 2017. The OMZ and nutrient features as a signature of interannual and low frequency variability in the Peruvian upwelling system. Biogeosciences. 14: 4601-4617. https://doi.org/10.5194/bg-14-4601-2017

Gutiérrez D, Akester M, Naranjo L. 2016. Productivity and Sustainable Management of the Humboldt Current Large Marine Ecosystem under climate change. Environmental Development. 17: 126-144. doi:10.1016/j.envdev.2015.11.004

Gutiérrez D, Enríquez E, Purca S, Quipuzcóa L, Marquina R, Flores G, Graco M. 2008. Oxygenation episodes on the continental shelf of central Peru: remote forcing and benthic ecosystem response. Prog. Oceanogr. 79: 177–189.

Hamersley M R, Lavik G, Woebken D, Rattray J E, Lam P, Hopmans E C, Sinninghe Damsté J S, Krüger S, Graco M, Gutiérrez D, Kuypers M. 2007. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography. 52: 923–933.

Jeffrey S W, Welschmeyer N A. 1997. Spectrophotometric and fluorometric equations in common use in oceanography. En: Phytoplankton Pigments in Oceanography. Monographs on Oceanographic Methodology. 10: 597 – 615.

Karnauskas K B. 2013. Can we distinguish canonical El Niño from Modoki? Geophys. Res. Lett. 40(19): 5246– 5251.

Krige D G. 1951. A statistical apochromat to some basic mine valuation problems on the Witwatersrand. Journal of chem., metal. and mining. 52: 119-139.

Ledesma J, Tam J, León V, Flores G, Morón O. 2011. Caracterización de la Zona de Mínimo de Oxígeno (ZMO) frente a la costa peruana entre 3°N y 14°S, 1999–2009. Bol Inst Mar Perú. 26: 49–57.

Liu Z, Alexander M. 2007. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Reviews of Geophysics. 45(2). Doi: 10.1029/2005RG000172

Mc Phaden M J. 1999. Genesis and evolution of the 1997–98 El Nino. Science. 283(5404): 950–954. doi.org/10.1126

Montecino V, Pizarro G. 2006. Productividad primaria, biomasa y tamaño del fitoplancton en canales y fiordos australes: patrones primavera-verano. In: Silva, N., Palma, S. (Eds.), Avances en el conocimiento oceanográfico de las aguas interiores chilenas, Puerto Montt a cabo de Hornos. Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso, Valparaíso. pp. 93–97.

Morales C, Hormazábal S, Blanco J L. 1999. Interannual variability in the mesoscale distribution of the depth of the upper boundary of the oxygen minimum layer off northern Chile (18-24°S): Implications for the pelagic system and biogeochemical cycling. Journal of Marine Research. 57: 909-932.

Mosquera-Vasquez K, Dewitte B, Illig S, Takahashi K, Garric G. 2013. The 2002/2003 El Niño: Equatorial waves sequence and their impact on sea surface temperature. J. Geophys. Res. Oceans. 118. doi:10.1029/2012JC008551

Nixon S, Thomas A. 2001. On the size of the Peru upwelling ecosystem. Deep-Sea Res. Pt. I, 48(11): 2521–2528. doi:10.1016/S0967-0637(01)00023-1

Oliver M A. 1990. Kriging: A Method of Interpolation for Geographical Information Systems. International Journal of Geographic Information Systems. 4: 313–332.

Quispe, J, Vásquez L, García W, Correa D, Pizarro L, Tello E, Domínguez N, Morón O, Flores R. 2021. Efectos de El Niño Costero 2017 en la estructura termohalina y flujos geostróficos frente a la costa norte del Perú. Bol Inst Mar Perú. 36(2): 385 - 408.

Rodríguez-Morata C, Díaz H, Ballesteros-Canovas F, Rohrer J A, Stoffel M. 2019. The anomalous 2017 coastal El Niño event in Peru. Climate Dynamics. 52: 5606-5622. doi: 10.1007/s00382-018-4466-y

Sánchez G, Calienes R, Zuta S. 2000. The 1997–1998 El Niño and its effect on the marine coastal system off Perú. CALCOFI reports. 41: 62–86.

Stramma L, Fischer T, Grundle D S, Krahmann G, Bange H W, Marandino C A. 2016. Observed El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Sci. 12: 861-873. https://doi.org/10.5194/os-12-861-2016

Strub P, Levine M, Enfield D. 1991. Equatorial and eastern boundary current variability in the North and South Pacific Oceans. https://ntrs.nasa.gov/citations/19930005775

Takahashi K, Martínez A G. Clim D. 2017. The very strong coastal El Niño in 1925 in the far‑eastern Pacific. https://doi.org/10.1007/s00382-017-3702-1.

Thomas A C, Brickley P, Weatherbee R. 2009. Interannual variability in chlorophyll concentrations in the Humboldt and California Current Systems. Prog. Oceanogr. 83: 386-392. doi:10.1016/j.pocean.2009.07.020

Wyrtki K. 1975. El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr. 5: 572–584.

Descargas

Publicado

2022-05-16

Cómo citar

Ledesma, J., Graco, M., Tam, J., Díaz, K., Anculle, T., García, W., Bernales, A., Quispe, D., Espinoza-Morriberón, D., Carhuapoma, W., & Gutiérrez, D. (2022). Efectos de El Niño Costero 2017 sobre la oxigenación, fertilidad y productividad del mar frente a las costas del Perú. Boletin Instituto Del Mar Del Perú, 36(2), 409–427. https://doi.org/10.53554/boletin.v36i2.345

Artículos más leídos del mismo autor/a

1 2 3 > >> 

Artículos similares

También puede {advancedSearchLink} para este artículo.