Índice del Área de Afloramiento (IAA) en el Norte del Ecosistema de la Corriente de Humboldt, Perú
DOI:
https://doi.org/10.53554/boletin.v40i1.408Palabras clave:
Índice de afloramiento, Norte del Ecosistema de la Corriente de Humboldt, frente térmico, El Niño y la Oscilación del SurResumen
Se desarrolló un Índice del Área de Afloramiento (IAA), que permite estimar las variaciones de la extensión espacial entre la línea de costa y el frente térmico (FT) en el Norte del Ecosistema de la Corriente de Humboldt (NECH). La posición del FT se obtuvo de la ubicación del máximo gradiente de temperatura superficial del mar (TSM), por latitud, entre los 4°S –18°S, utilizando datos satelitales de TSM de MUR-JPL-L4-GLOB-v4.1, entre 2003 y 2019. Estacionalmente, el IAA mostró un aumento hasta llegar a un máximo en el otoño austral (180,9 x 103 km2) y una reducción hasta llegar a un mínimo en primavera (126,3 x 103 km2), presentando un valor promedio anual de 148 x 103 km2. Interanualmente, el IAA promedio se redujo durante los eventos El Niño (114,6 x 103 km2) y aumentó durante los eventos La Niña (244,0 x 103 km2). El seguimiento de las variaciones del IAA permitirá investigar los factores involucrados en el proceso de afloramiento (como los vientos paralelos a la costa, el transporte Ekman y bombeo Ekman y sus impactos biogeoquímicos).
Descargas
Alternative Metrics
Métricas
Citas
Albert, A., Echevin, V., Lévy, M. & Aumont, O. (2010). Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. J. Geophys. Res., 115, C12033. https://doi.org/10.1029/2010JC006569
Astudillo, O., Dewitte, B., Mallet, M., Frappart, F., Rutllant, J.A., Ramos, M., Bravo, L., Goubanova, K. & Illig, S. (2017). Surface winds off Peru-Chile: Observing closer to the coast from radar altimetry, Remote Sensing of Environment, 191, 179-196. https://doi.org/10.1016/j.rse.2017.01.010
Bakun, A. (1973). Coastal upwelling indices, west coast of North America, 1946 –71 (NOAA technical report NMFS SSRF-671). https://repository.library.noaa.gov/view/noaa/9041/noaa_9041_DS1.pdf
Bakun, A. (2006). Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina, 70(S2), 105–122. https://doi.org/10.3989/scimar.2006.70s2105
Belkin, I. M., Cornillon, P. & Ullman, D. (2003). Ocean fronts around Alaska from satellite sst data. En VII Conferencia sobre Meteorología y Oceanografía Polares y Simposio Conjunto sobre Variaciones Climáticas en Altas Latitudes. Comité de Meteorología Polar y Oceanografía de la AMS. https://ams.confex.com/ams/7POLAR/techprogram/paper_61548.htm
Benazzouz, A., Mordane, S., Orbi, A., Chagdali, M., Hilmi, K., Atillah, A., Pelegrí, J. L. & Demarcq, H. (2014). An improved coastal upwelling index from sea surface temperature using satellite-based approach – The case of the Canary Current upwelling system. Continental Shelf Research, 81, 38-54. https://doi.org/10.1016/j.csr.2014.03.012
Briceño-Zuluaga, F., Flores-Aqueveque, V., Nogueira, J., Castillo., A., Cardich, J., Rutllant, J., Caquineau, S., Sifeddine, A., Salvatecci, R., Valdes, J. & Gutierrez, D. (2023). Surface wind strength and sea surface temperature connections along the south Peruvian coast during the last 150 years. Aeolian Research, 61, 100855. https://doi.org/10.1016/j.aeolia.2023.100855
Calienes, R. (2014). Producción primaria en el ambiente marino en el Pacífico sudeste, Perú, 1960-2000. Bol Inst Mar Perú, 29(1-2), 306. https://hdl.handle.net/20.500.12958/2302
Chaigneau, A., Gizolme, A. & Grados, C. (2008). Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79,106–119. https://doi.org/10.1016/j.pocean.2008.10.013
Chavez, F. P. & Barber, R. T. (1987). An estimate of new production in the equatorial Pacific. Deep-Sea Research, 34(7), 1229-1243. https://doi.org/10.1016/0198-0149(87)90073-2
Chavez, F. P. & Messié, M. (2009). A comparison of Eastern Boundary Upwelling Ecosystems. Progress in Oceanography, 83(1–4), 80-96. https://doi.org/10.1016/j.pocean.2009.07.032
Chamorro, A., Echevin, V., Colas, F., Oerder, V., Tam, J. & Quispe-Ccalluari, C. (2018). Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997–1998 in the Peruvian upwelling system. Climate Dynamics, 51, 3717–3733. https://doi.org/10.1007/s00382-018-4106-6
Chen, H. H., Qi, Y., Wang, Y. & Chai, F. (2019). Seasonal variability of SST fronts and winds on the southeastern continental shelf of Brazil. Ocean Dynamics, 69, 1387–1399. https://doi.org/10.1007/s10236-019-01310-1
Chin, T. M., Vazquez-Cuervo, J. & Armstrong, E. M. (2017). A multi-scale high-resolution analysis of global sea surface temperature. Remote Sensing of Environment, 200, 154-169. https://doi.org/10.1016/j.rse.2017.07.029
Comité Técnico del Estudio Nacional del Fenómeno El Niño [Enfen]. (2012). Definición operacional de los eventos El Niño y La Niña y sus magnitudes en la costa del Perú (Nota Técnica). https://hdl.handle.net/20.500.12542/3229
Cushman-Roisin, B. & Beckers, J. M. (2006). Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects (2a ed.). Academic Press.
Demarcq, H., Barlow, R. & Hutchings L. (2007). Application of a chlorophyll index derived from satellite data to investigate the variability of phytoplankton in the Benguela ecosystem. African Journal of Marine Science, 29(2), 271-282. http://dx.doi.org/10.2989/AJMS.2007.29.2.11.194
Du, T., Wang, S., Jing, Z., Wu, L., Zhang, C. & Zhang, B. (2024). Future changes in coastal upwelling and biological production in eastern boundary upwelling systems. Nature communications, 15, 6238. https://doi.org/10.1038/s41467-024-50570-z
Echevin, V., Gévaudan, M., Espinoza-Morriberón, D., Tam, J., Aumont, O., Gutierrez, D. & Colas, F. (2020). Physical and biogeochemical impacts of RCP8.5 Scenario in the Peru upwelling system. Biogeosciences, 17, 3317–3341. https://doi.org/10.5194/bg-17-3317-2020
Grados, C., Chaigneau, A., Echevin, V. & Dominguez, N. (2018). Upper ocean hydrology of the Northern Humboldt Current System at seasonal, interannual and interdecadal scales. Progress in Oceanography, 165, 123-144. https://doi.org/10.1016/j.pocean.2018.05.005
Hagen, E., Feistel, R., Agenbag, J. J. & Ohde, T. (2001). Seasonal and interannual changes in Intense Benguela Upwelling (1982–1999). Oceanologica Acta, 24(6), 557-568. https://doi.org/10.1016/S0399-1784(01)01173-2
Halpern, D. (2002). Offshore Ekman Transport and Ekman Pumping Off Peru during the 1997–1998 El Niño. Geophys. Res. Lett.,29(5), 1075. https://doi.org/10.1029/2001GL014097
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S. & Zhang, H. M.(2017). Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30(20), 8179-8205. https://doi.org/10.1175/JCLI-D-16-0836.1
Jin, X., Dong, C., Kurian, J., McWilliams, J. C., Chelton, D. B. & Li, Z. (2009). SST–Wind Interaction in Coastal Upwelling: Oceanic Simulation with Empirical Coupling. Journal Physical Oceanography, 39, 2957–2970. https://doi.org/10.1175/2009JPO4205.1
JPL MUR MEaSUREs Project. (2015). GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (V 4.1). Jet Propulsion Laboratory California Institute of Technology, Physical Oceanography Distributed Active Archive Center (PODAAC). https://doi.org/10.5067/GHGMR-4FJ04
Manay, R., Montes, I., Campos, F. & Segura, B. (2021). El afloramiento costero en el sistema de Corrientes de Humboldt frente a Perú. Boletín científico El Niño, Instituto Geofísico del Perú, 8(4), 16-21.
Marchesiello, P. & Estrade, P. (2010). Upwelling limitation by onshore geostrophic flow. Journal of Marine Research, 68(1), 37–62. https://elischolar.library.yale.edu/journal_of_marine_research/258
Messié, M. & Chavez, F. P. (2015). Seasonal regulation of primary production in eastern boundary upwelling systems. Progress in Oceanography, 134, 1–18. https://doi.org/10.1016/j.pocean.2014.10.011
Mogollón, R. (2020). ENSO-driven CO2 efflux variability and the role of the upwelling region on the carbon exchange in the Northern Humboldt Current System. Journal of Marine Systems, 201, 103240. https://doi.org/10.1016/j.jmarsys.2019.103240
Morón, O. (2000). Características del ambiente marino frente a la costa peruana. Bol Inst Mar Perú, 19(1–2), 179-204. https://hdl.handle.net/20.500.12958/1008
Mustapha, S. B., Larouche, P. & Dubois, J-M. (2016). Spatial and temporal variability of sea-surface temperature fronts in the coastal Beaufort Sea. Continental Shelf Research, 124, 134-141. https://doi.org/10.1016/j.csr.2016.06.001
Nixon, S. & Thomas, A. (2001). On the size of the Peru upwelling ecosystem. Deep-Sea Research I, 48(11). 2521-2528. https://doi.org/10.1016/S0967-0637(01)00023-1
Oerder, V., Colas, F., Echevin, V., Codron, F., Tam, J. & Belmadani, A. (2015). Peru-Chile upwelling dynamics under climate change. Journal Geophysical Research: Oceans, 120, 1152–1172. https://doi.org/10.1002/2014JC010299
Pastor, M. V., Palter, J. B., Pelegrí, J. L & Dunne J. P. (2013). Physical drivers of interannual chlorophyll variability in the eastern subtropical North Atlantic. Journal Geophysical Research: Oceans, 118, 3871-3886. https://doi.org/10.1002/jgrc.20254
Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R. & Chavez, F. P. (2006). Primary production in the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 285–317. https://doi.org/10.1016/j.pocean.2006.03.012
Penven, P., Echevin, V., Pasapera, J., Colas, F. & Tam, J. (2005). Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res., 110, C10021. https://doi.org/10.1029/2005JC002945
Pietri, A., Colas, F., Mogollon, R., Tam J. & Gutierrez D. (2021). Marine heatwaves in the Humboldt current system: from 5-day localized warming to year-long El Niños. Sci Rep., 11, 21172. https://doi.org/10.1038/s41598-021-00340-4
Rosales Quintana, G. M., Marsh, R. & Icochea Salas, L. A. (2021). Interannual variability in contributions of the Equatorial Undercurrent (EUC) to Peruvian upwelling source water. Ocean Sci., 17, 1385–1402. https://doi.org/10.5194/os-17-1385-2021
Rykaczewski, R. R. & Checkley, D. M. (2008). Influence of ocean winds on the pelagic ecosystem in upwelling regions. PNAS, 105(6). 1965-1970. https://doi.org/10.1073/pnas.0711777105
Shi, R., Guo, X., Wang, D., Zeng, L. & Chen, J. (2015). Seasonal variability in coastal fronts and its influence on sea surface wind in the northern South China Sea. Deep-Sea Research II, 119, 30–39. https://doi.org/10.1016/j.dsr2.2013.12.018
Takahashi, K., Mosquera, K. & Reupo, J. (2014). El Índice Costero El Niño (ICEN): Historia y actualización. Boletín Técnico: Generación de modelos climáticos para el pronóstico de la ocurrencia del Fenómeno El Niño, 1(2), 8-9. http://hdl.handle.net/20.500.12816/4639
Tomczak, M. & Andrew, C. J. F. (1996). Advection and diffusion in coastal upwelling events. Bulletin of the Australian Meteorological and Oceanographic Society, 9, 41-48.
Vazquez-Cuervo, J., Dewitte, B., Chin, T. M., Armstrong, E. M., Purca, S. & Alburqueque, E. (2013). An analysis of SST gradients off the Peruvian Coast: The impact of going to higher resolution. Remote Sensing of Environment, 131, 76-84. https://doi.org/10.1016/j.rse.2012.12.010
Vazquez-Cuervo, J., Torres, H. S., Menemenlis, D., Chin T. & Armstrong, E. M. (2017). Relationship between SST gradients and upwelling off Peru and Chile: model/satellite data analysis. International Journal of Remote Sensing, 38(23), 6599-6622. http://dx.doi.org/10.1080/01431161.2017.1362130
Zuta, S. & Guillén, O. (1970). Oceanografía de las aguas costeras del Perú. Bol Inst Mar Perú, 2(5), 157-324. https://hdl.handle.net/20.500.12958/949
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Boletin Instituto del Mar del Perú

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.