Contrasting impacts on the Peruvian coast of warm ENSO and El Niño Costero 2017

winds, upwelling, productivity, and anchoveta

Authors

  • Dante Espinoza-Morriberón IMARPE, DGIOCC, Laboratorio de Modelado Oceanográfico, Ecosistémico y de Cambio Climático https://orcid.org/0000-0001-7731-8509
  • Vincent Echevin Laboratoire d'Océanographie et de Climatologie : Expérimentation et Analyse Numérique (LOCEAN), Institut Pierre-Simon Laplace (IPSL), IRD/CNRS/UPMC/MNHN https://orcid.org/0000-0003-3859-840X
  • Francois Colas Laboratoire d'Océanographie et de Climatologie : Expérimentation et Analyse Numérique (LOCEAN), Institut Pierre-Simon Laplace (IPSL), IRD/CNRS/UPMC/MNHN https://orcid.org/0000-0002-5859-6586
  • Erich Díaz IMARPE, DGIRP, Área Funcional de Dinámica de Población y Evaluación de Recursos
  • Jorge Tam IMARPE, DGIOCC, Laboratorio de Modelado Oceanográfico, Ecosistémico y de Cambio Climático
  • Tony Anculle IMARPE, DGIOCC, Área Funcional de Oceanografía Química y Geológica
  • Jesús Ledesma IMARPE, DGIOCC, Área Funcional de Oceanografía Química y Geológica.
  • Dimitri Gutiérrez Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático https://orcid.org/0000-0001-5443-6924

DOI:

https://doi.org/10.53554/boletin.v36i2.341

Keywords:

El Niño costero, Afloramiento costero, Anchoveta, Engraulis ringens

Abstract

Off Peru, in summer and during warm El Niño Southern Oscillation (ENSO) events, there is usually high Sea Surface Temperature (SST) and flooding rains. In summer 2017, SST and heavy rains comparable to extreme warm ENSO events were
reached. Nevertheless, the origin of the warming, known as El Niño Costero 2017, was not related to ENSO. Our main goal is to compare the impacts of warm ENSO events (EN) and El Niño Costero 2017 (ENC 2017) off Peru, using a coupled physical-biogeochemical model (ROMS-PISCES) and satellite data. There is coastal wind intensification during EN events (summer-spring). In summer, upwelling intensifies slightly and there is an increase in SST along the coast, as well as a decrease in productivity and anchoveta. When ENC 2017 occurred, the coastal winds weakened and there was reduced upwelling in the summer. There was a greater increase in SST north of 10°S, as well as a decrease in productivity, and positive chlorophyll-a anomalies were recorded to the south. The anchoveta’s population exhibited a southward displacement (towards central Peru), but biomass was not significantly affected. Herein, we discussed the mechanisms responsible for the warming and low productivity during EN events and the ENC 2017, as well as a tentative mechanism to explain the maintenance of the anchoveta biomass during ENC 2017.

Downloads

Download data is not yet available.

Alternative Metrics

Metrics

Metrics Loading ...

References

Aguirre A, Rosado M, Dionicio A, Ynga G, Gasper W, Niño A. 2018. Avances en el conocimiento de la ecofisiología de la anchoveta Engraulis ringens en el contexto de la variabilidad oceanográfica del sistema de afloramiento peruano. Presentación en el VI Congreso de Ciencias del Mar del Perú 2018, Huacho, Perú.

Aumont O, Bopp L. 2006. Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles. 20: GB2017. doi:10.1029/2005GB002591

Aumont O, Ethé C, Tagliabue A, Bopp L, Gehlen M. 2015. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development. 8: 2465-2513. doi:10.5194/gmd-8-2465-2015

Barber R T, Chavez F P. 1983. Biological consequences of El Niño. Sciences. 222: 1203–1210. doi:10.1126/science.222.4629.1203

Bentamy A, Croize-Fillon D, Queffeulou P, Liu C, Roquet H. 2009. Evaluation of high-resolution surface wind products at global and regional scales. J. Operational Oceanography. 2 (2): 15- 27.

Bertrand A, Segura M, Gutiérrez M, Vásquez L. 2004. From small-scale habitat loopholes to decadal cycles: a habitat-based hypothesis explaining fluctuation in pelagic fish populations off Peru. Fish and Fisheries. 5: 296–316.

Buitrón B, Perea A. 2000. Aspectos reproductivos de la anchoveta peruana durante el periodo 1992-2000. Bol Inst Mar Perú. 19(1-2): 45-53.

Carr M E. 2003. Simulation of carbon pathways in the planktonic ecosystem off Peru during the 1997–1998 El Niño and La Niña. Journal Geophysical Research. 108(C12): 3380. Doi: 10.1029/1999JC000064

Carr M E, Strub P T, Thomas A C, Blanco J L. 2002. Evolution of 1996–1999 La Niña and El Niño conditions off the western coast of South America: A remote sensing perspective. J. Geophys. Res. 107(C12): 3236, doi:10.1029/2001JC001183

Conkright M, Locarnini R, Garcia H, O’Brien T D, Boyer T P, Stephens C, Antononov J. 2002. World Ocean Atlas 2001: objectives, analyses, data statistics and figures [CD-ROM], NOAA Atlas NESDIS 42. Silver Spring Md.

Colas F, Capet X, McWilliams J C, Shchepetkin A. 2008. 1997–98 El Niño off Peru: a numerical study. Progress in Oceanography. 79: 138–155.

Colas F, Echevin V, Correa D, Espinoza-Morriberón D, Campos M, Demarcq H, Gutiérrez D. 2018. The impact of El Niño events on the fine-scale dynamics off Peru coasts: In situ measurements and regional model analysis. Libro de resúmenes del simposio "Understanding Changes in Transitional Areas of the Pacific”, La Paz, Baja California. México.

Calienes R. 2014. Producción primaria en el ambiente marino en el Pacífico sudeste, Perú, 1960- 2000. Bol Inst Mar Perú. 29 (1-2): 306.

Calienes R, Guillén O, Lostaunau N. 1985. Variabilidad espacio-temporal de clorofila, producción primaria y nutrientes frente a la costa peruana. Bol Inst Mar Perú. 10: 6-12.

Chamorro A, Echevin V, Colas F, Oerder V, Tam J, QuispeCcalluari C. 2018. Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997–1998 in the Peruvian upwelling system. Climate Dynamics. 1-17, doi:10.1007/s00382-018-4106-6

Da Silva A M, Young C C, Levitus S. 1994. Atlas of surface marina data 1994. Technical report, Natl. Oceanogr. and Atmos. Admin. Silver Spring Md. 83 pp.

Dale A W, Graco M, Wallmann K. 2017. Strong and Dynamic Benthic-Pelagic Coupling and Feedbacks in a Coastal Upwelling System (Peruvian shelf). Frontiers in Marine Science. 4(29): 1-17. doi: 10.3389/fmars.2017.00029

Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Meteorol. Q. J. R. Soc. A. 137: 553–597. doi: 10.1002/ qj.828

Demarcq H, Benazzouz A. 2015. Trends in phytoplankton and primary productivity off Northwest Africa. In: Oceanographic and biological features in the Canary Current Large Marine Ecosystem. Valdés L, Déniz‐González I. (eds). IOC‐UNESCO, Paris. IOC Technical Series. 115: 331‐341. URI: http://hdl.handle.net/1834/9199.

Echevin V, Aumont O, Ledesma J, Flores G. 2008. The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A model study. Prog. Oceanogr. 79: 167-76.

Echevin V, Albert A, Lévy M, Aumont O, Graco M, Garric G. 2014. Remotely-forced intraseasonal variability of the Northern Humboldt Current System surface chlorophyll using a coupled physical-ecosystem model. Cont. Shelf Res. 73: 14-30. doi:10.1016/j.csr.2013.11.015.

Echevin V, Colas F, Espinoza-Morriberón D, Anculle T, Vasquez L, Gutierrez D. 2018. Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador. Frontiers in Marine Science. 5: 367. doi: 10.3389/fmars.2018.00367

ENFEN. 2017. Informe Técnico ENFEN Nº 4. Abril 2017. Disponible en https://www.dhn.mil.pe/Archivos/ oceanografia/enfen/informe-tecnico/04-2017.pdf

Enfield D B. 1981. Thermally driven wind variability in the planetary boundary layer above Lima, Peru. J. Geophys. Res. 86(C3): 2005–2016. doi:10.1029/JC086iCO3p02005

Espinoza-Morriberón D, Echevin V, Colas F, Tam J, Ledesma J, Graco M, Vásquez L. 2017a. Impact of the El Niño event on the productivity of the Peruvian Coastal Upwelling System. Journal Geophysical Research Oceans. 122(7): 5423–5444. doi:10.1002/2016JC012439

Espinoza-Morriberón D, Ledesma J, Colas F, Echevin V, Anculle T, Tam J. 2017b. Productividad en el Sistema de Afloramiento Peruano durante El Niño 2015-2016. Inf Inst Mar Perú. 44(4): 460-466.

Espinoza-Morriberón D, Echevin E, Colas F, Tam J, Gutierrez D, Graco D, Ledesma J, Quispe-Ccalluari C. 2018. Oxygen variability during ENOS in the Tropical South Eastern Pacific, Frontier in Marine Science. doi: 10.3389/fmars.2018.00526

FAO. 2018. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome.

Garreaud R D. 2018. A plausible atmospheric trigger for the 2017 coastal El Niño. Int. J. Climatol. doi:10.1002/joc.5426

Goubanova K, Echevin V, Dewitte B, Codron F, Takahashi K, Terray P, Vrac M. 2011. Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: diagnosing the impact of climate change from the IPSLCM4 model. Climate Dynamics. 36: 1365. doi:10.1007/s00382-010- 0824-0

Graco M, Purca S, Dewitte B, Morón O, Ledesma J, Flores G, et al. 2017. The OMZ and nutrients features as a signature of interannual and low frequency variability off the Peruvian upwelling system. Biogeosciences. 14 (20): 4601-4617. doi:10.5194/bg-14-4601-2017

Gutiérrez D, Enríquez E, Purca S, Quipúzcoa L, Marquina R, Flores G, et al. 2008. Oxygenation episodes on the continental shelf of central Peru: Remote forcing and benthic ecosystem response. Progress in Oceanography. 79 (2): 177-189. doi:10.1016/j.pocean.2008.10.025

Hu Z Z, Huang B, Zhu J, Kumar A, McPhaden M J. 2018. On the variety of coastal El Niño events. Climate Dynamics. doi:10.1007/s00382-018-4290-4

Huyer A, Smith R L, Paluszkiewicz T. 1987. Coastal upwelling off Peru during normal and El Niño times. J. Geophys. Res. 92: 14,297–14,307. doi:10.1029/JC092iC13p14297

Imarpe. 1972. La anchoveta en relación con el Fenómeno de El Niño 1972. Instituto del Mar del Perú, Serie de Informes Especiales. IM. 104: 21 pp.

Imarpe. 2015. Situación del Stock Norte-Centro de la anchoveta peruana a setiembre de 2015. Inf Inst Mar Perú. 37 pp.

Imarpe. 2016. Situación del Stock Norte-Centro de la anchoveta peruana al 01 de mayo de 2016. Inf Inst Mar Perú. 20 pp.

Imarpe. 2017. Informe Evaluación Hidroacústica de Recursos Pelágicos, Crucero 1703-04. Inf Inst Mar Perú. 38p.

Kessler W S. 2006. The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr., 69: 181–217.

Kessler W S, McPhaden M J. 1995. Oceanic equatorial waves and the 1991-1993 El Niño. J. Clim., 8: 1757–1774.

Lellouche J M, Greiner E, Le Galloudec O, Garric G, Regnier C, Drevillon M, et al. 2018. Recent updates on the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12 high-resolution system. Ocean Sci. 14: 1093–1126. doi: 10.5194/os-14-1093-2018

Liu W, Katsaros K B, Businger J A. 1979. Bulk parameterization of the air-sea exchange of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci. 36: 1722-1735.

Mathisen O. 1989. Adaptation of the anchoveta (Engraulis ringens) to the Peruvian upwelling system. In D. Pauly, P. Muck, J. Mendo & I. Tsukayama (Eds.). The Peruvian upwelling ecosystem: dynamics 634 and interactions. ICLARM Conference Proceedings. 18: 438 p.

Ñiquen M, Bouchón M. 2004. Impact of El Niño event on pelagic fisheries in Peruvian waters, Deep Sea Res. Part II. 51: 563-574, doi:10.1016/j.dsr2.2004.03.001

Oerder V, Colas F, Echevin V, Codron F, Tam J, Belmadani A. 2015. Peru-Chile upwelling dynamics under climate change. J. Geophys. Res. Oceans. 120: 1152–1172, 639 doi:10.1002/2014JC010299

O´Reilly J E, Maritorena S, Mitchell B G, Siegel D A, Carder K L, Garver S A, Kharu M, McClain C. 1998. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103(C11): 24,937-24,953, doi:10.1029/98JC02160

Ocean Biology Processing Group. 2003. MODIS Aqua Level 3 Global Daily Mapped 4 km Chlorophyll a. Ver. 6. PO. DAAC, CA, USA. Dataset accessed [2016-12-20].

Peng Q, Xie S P, Wang D, Zheng X T, Zhang H. 2019. Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño. Nature Communication. doi:10.1038/s41467-018-08258-8

Ridgway K R, Dunn J R, Wilkin J L. 2002. Ocean interpolation by four-dimensional least squares-Application to the waters around Australia. J. Atmos. Oceanic Technol. 19(9): 1357-1375.

Rodríguez-Morata C, Díaz H F, Ballesteros-Canovas J A, Rohrer M, Stoffel M. 2018. The anomalous 2017 coastal El Niño event in Peru. Climate Dynamics, doi:10.1007/s00382-018-4466-y

Sánchez S. 2000. Variación estacional e interanual de la biomasa fitoplanctónica y concentraciones de clorofila a, frente a la costa peruana durante 1976-2000. Bol Inst Mar Perú. 19: (1-2): 29-43.

Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system: a split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Model. 9: 347–404.

Takahashi K, Montecinos A, Goubanova K, Dewitte B. 2011. ENOS regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38: L10704. doi:10.1029/2011GL047364

Takahashi K, Martínez A G. 2017. The very strong coastal El Niño in 1925 in the far-eastern Pacific. Climate Dynamics. 1-27. doi:10.1007/s00382-017-3702-1

Takahashi K, Aliaga-Nestares V, Ávalos G, Bouchon M, Castro A, Cruzado L, Dewitte B, Lavado- Casimiro W, Marengo J, Martínez A G, Mosquera-Vásquez K, Quispe N. 2018. The 2017 Coastal El Niño. In: State of Climate 2017. Hartfield G., Blunden J. & Arndt D. suplemento especial de The Bulletin of the American Meteorological Society. 99(8): S210 – S211. doi: 664 doi.org/10.1175/2018BAMSStateoftheClimate.1

Published

2022-05-16

How to Cite

Espinoza-Morriberón, D., Echevin, V., Colas, F., Díaz, E., Tam, J., Anculle, T., Ledesma, J., & Gutiérrez, D. (2022). Contrasting impacts on the Peruvian coast of warm ENSO and El Niño Costero 2017: winds, upwelling, productivity, and anchoveta. Boletin Instituto Del Mar Del Perú, 36(2), 329–348. https://doi.org/10.53554/boletin.v36i2.341

Similar Articles

You may also start an advanced similarity search for this article.