CO2 fluxes in the Bransfield strait and surrounding areas of Elephant island during the austral summer 2018

Authors

  • Wilson Carhuapoma Instituto del Mar del Perú, Dirección General de Investigaciones Oceanográficas y Cambio Climático, Callao, Perú. https://orcid.org/0000-0001-8474-9710
  • Michelle Graco Instituto del Mar del Perú, Dirección General de Investigaciones Oceanográficas y Cambio Climático, Callao, Perú. https://orcid.org/0000-0002-6193-3256
  • Luis Vásquez Instituto del Mar del Perú, Dirección General de Investigaciones Oceanográficas y Cambio Climático, Callao, Perú. https://orcid.org/0000-0002-6060-6763
  • Jesús Ledesma Instituto del Mar del Perú, Dirección General de Investigaciones Oceanográficas y Cambio Climático, Callao, Perú. https://orcid.org/0000-0003-4919-7089
  • Dimitri Gutiérrez Instituto del Mar del Perú, Dirección General de Investigaciones Oceanográficas y Cambio Climático, Callao, Perú. https://orcid.org/0000-0001-5443-6924
  • Pedro Tapia Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Huaraz, Perú. https://orcid.org/0000-0002-0708-4468
  • Katy Medina Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz, Perú. https://orcid.org/0000-0002-2910-6808
  • Edwin Loarte Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz, Perú. https://orcid.org/0000-0003-3123-1904
  • Hairo León Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz, Perú. https://orcid.org/0000-0003-2283-7584

DOI:

https://doi.org/10.53554/boletin.v39i2.410

Keywords:

CO2 fluxes, ocean-atmosphere, Bransfield Strait, Antarctica

Abstract

From January 3 to 15, 2018 (austral summer), the ANTAR XXV research cruise took place, covering the area from Trinity Island through the Bransfield Strait, around Elephant Island, and up to Admiralty Bay. During this expedition, 14,970 surface measurements were conducted, including the partial pressure of CO2 to determine the CO2 fluxes in the Bransfield Strait and around Elephant Island, as well as temperature, salinity, dissolved oxygen, and chlorophyll-a. The transitional water masses of Bellingshausen (TBW), Weddell (TWW), and the Scotia Sea were also characterized. The Bransfield Front was identified, defined by the 1 °C isotherm located in the intermediate zone of the strait, where surface dissolved oxygen values ranged from 330 to 340 µmol kg-1 in most of the strait and between 350 and 360 µmol kg-1 around Elephant Island, associated with the melting of glaciers adjacent to the continent. Chlorophyll-a concentrations were measured as an indicator of phytoplankton and primary productivity, with values exceeding 0.7 µg L⁻¹ in the TBW, linked to the higher nutrient content from the melting glaciers of the South Shetland Islands. Wind speeds were below 6 m s⁻¹ in the strait, while around Elephant Island, speeds were close to 10 m s⁻¹. The in situ pCO2 values ranged between 427.7 and 574.6 µatm, with positive CO2 fluxes from 5 to 20 mmol m⁻² day⁻¹ in the Bransfield Strait and from 25 to 35 mmol m⁻² day⁻¹ around Elephant Island. Additionally, chlorophyll-a concentrations in the TBW water masses were associated with decreased seawater pCO2 and, consequently, lower CO2 fluxes compared to the southern zone of the strait near the peninsula, which is affected by the less productive TWW. The eastern zone of Elephant Island exhibited the highest CO2 flux, attributed to stronger winds. The results indicate that the Bransfield Strait and Elephant Island predominantly act as a CO2 source, with an average flux of 11.3 mmol m⁻² day⁻¹.

Downloads

Download data is not yet available.

Alternative Metrics

Metrics

Metrics Loading ...

References

Álvarez, M., Rios A. & Rosón G. (2002). Spatio-temporal variability of air–sea fluxes of carbon dioxide and oxygen in the Bransfield and Gerlache Straits during Austral summer 1995–96. Deep-Sea Research Part II-Tropical Studies in Oceanography, 49, 643–662. https://doi.org/10.1016/S0967-0645(01)00116-3

Baylón, M. (2019). Variación espacial e interanual del fitoplancton durante los veranos australes de la ensenada Mackellar-Isla Rey Jorge, Antártica: 2008-2013 [Tesis para optar el Grado Académico de Magister en Ecosistemas y Recursos Acuáticos con mención en Ecosistemas Acuáticos]. Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Biológicas. Unidad de Posgrado. https://hdl.handle.net/20.500.12672/10494

Bracegirdle, T. J., Connolley, W. M. & Turner, J. (2008). Antarctic climate change over the twenty first century. Journal of Geophysical Research, 113, D03103. https://doi.org/10.1029/2007JD008933

Collares, L. L., Mata, M. M., Kerr, R., ArigonyNeto, J. & Barbat, M. M. (2018). Iceberg drift and ocean circulation in the northwestern Weddell Sea, Antarctica. Deep Res. Part II Top Stud Oceanogr, 149, 10-24. https://doi.org/10.1016/j.dsr2.2018.02.014

Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci., 1, 169–192. https://doi.org/10.1146/annurev.marine.010908.163834

Dotto, T. S., Mata, M. M., Kerr, R., & Garcia, C. A. E. (2021). A novel hydrographic gridded data set for the Northern Antarctic Peninsula. Earth Syst. Sci. Data, 13(2), 671–696. https://doi.org/10.5194/essd-13-671-2021

García, M. A., Castro, C. G., Rıos, A. F., Doval, M. D., Rosón, G., Gomis, D. & López, O. (2002). Water masses and distribution of physic-chemical properties in the Western Bransfield Strait and Gerlache Strait during Austral summer 1995/96. Deep Sea Research - Part II- Topical Studies in Oceanography, 49(4-5), 585-602. https://doi.org/10.1016/S0967-0645(01)00113-8

Gonçalves-Araujo, R., Silva de Souza, M., Tavano, V. M. & Eiras, C. A. (2015). Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. Journal of Marine Systems, 142, 1-15. https://doi.org/10.1016/j.jmarsys.2014.09.007

Gordon, A. L., Mensch, M., Dong, Z., Smethie Jr., W. M. & de Bettencourt, J. (2000). Deep and bottom water of the Bransfield Strait eastern and western basins. Journal of Geophysical Research 105(C5), 11337–11346. https://doi.org/10.1029/2000JC900030

Grasshoff, K. Kremling, K. & Ehrhardt, M. (Eds.). (1999). Methods of Seawater Analysis. Wiley-VCH, Verlag GmbH. https://doi.org/10.1002/9783527613984

Grelowski, A., Majewicz, A. & Pastuszak, M. (1986). Mesoscale hydrodynamic processes in the region of the Bransfield Strait and the southern part of Drake Passage during BIOMASS-SIBEX 1983/1984. Polish Polar Research, 7(4), 353–369. https://api.semanticscholar.org/CorpusID:133413197

Ito, R. G., Tavano, V. M., Borges, C. R. & Eiras, C. A. (2018). Sea-air CO2 fluxes and pCO2 variability in the Northern Antarctic Peninsula during three summer periods (2008–2010). Deep-Sea Research Part II: Tropical studies in oceanography, 149, 84-98. https://doi.org/10.1016/j.dsr2.2017.09.004

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri & L. Meyer (Eds.)]. https://epic.awi.de/id/eprint/37530/1/IPCC_AR5_SYR_Final.pdf

Kerr, R., Orselli, I. B. M., Lencina-Avila, J., Eidt, R. T., Mendes, C., Cunha, L. C., Goyet, C., Mata, M. M. & Tavano, V. M. (2018). Carbonate system properties in the Gerlache Strait, Northern Antarctic Peninsula (February 2015): I. Sea-Air CO2 fluxes. Deep Sea Research Part II: Topical Studies in Oceanography, 149, 171-181. https://doi.org/10.1016/j.dsr2.2017.02.008

Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C., Van Heuven, S., Hoppema M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B. & Wanninkhof, R. (2015). The reinvigoration of the Southern Ocean carbon sink. Science, 349(6253), 1221–1224. https://doi.org/10.1126/science.aab2620

Law, C., Breviere, E., Leeuw, G., Garcon, V., Guieu, C., Kieber, D., Kontradowitz, S., Paulmier, A., Quinn, P., Saltzman, E., Stefels, J. & von Glasow, R. (2013). Evolving research directions in Surface Ocean–Lower Atmosphere (SOLAS) science. Environ. Chem., 10, 1–16. https://doi.org/10.1071/EN12159

Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., … Zeng, N. (2015). Global Carbon Budget 2014. Earth System Science Data, 7(2), 349–396. https://doi.org/10.5194/essd-7-349-2015

López, O., García, M.A., Gomis, D., Rojas, P., Sospedra, J. & Sánchez-Arcilla, A. (1999). Hydrographic and hydrodynamic characteristics of the eastern basin of the Bransfield Strait (Antarctica). Deep-Sea Research I, 46(10), 1755–1778. https://doi.org/10.1016/S0967-0637(99)00017-5

Moffat, C. & Meredith, M. (2018). Shelf-ocean exchange and hydrography west of the Antarctic Peninsula: a review. Philosophical Transactions of the Royal Society: A Mathematical Physical and Engineering Sciences, 376(2122), 20170164. https://doi.org/10.1098/rsta.2017.0164

Monteiro, T., Kerr, R. & da Costa Machado, E. (2020). Seasonal Variability of net sea-air CO2 fluxes in a coastal region of the northern Antarctic Peninsula. Scientific Reports, 10, 14875. https://doi.org/10.1038/s41598-020-71814-0

Morozov, E. G. (2007). Currents in Bransfield Strait. Doklady Earth Sciences, 415A(6), 984–986. https://doi.org/10.1134/S1028334X07060347

Munro, D. R., Lovenduski, N. S., Takahashi, T., Stephens, B. B., Newberger, T. & Sweeney, C. (2015). Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015). Geophysical Research Letter, 42(18), 7623–7630. https://doi.org/10.1002/2015GL065194

Palmer, M., Gomis, D., Flexas, M., Jordá, G., Jullion, L., Tsubouchi, T. & Naveira Garabato, A. C. (2012). Water mass pathways and transports over the South Scotia Ridge west of 50°W. Deep-Sea Research I, 59, 8-24. https://doi.org/10.1016/j.dsr.2011.10.005

Paparazzo, F. E. (2003). Evaluación de nutrientes inorgánicos en aguas oceánicas y su relación con la biomasa fitoplanctónica. [Tesis para optar el Título Profesional en Ciencias Biológicas]. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ciencias Naturales.

Pelto, M. (4 de enero de 2016). Endurance Glacier, Elephant Island Retreat. AGU Advancing Earth and Space Science.

Pichlmaier, M., Aquino, F., Da Silva, C., & Braun, M. (2004). Suspended sediments in Admiralty Bay, King George Island (Antarctica). Pesquisa Antártica Brasileira, 4, 77-85.

Rakusa-Suszczewski, S. (1996). Spatial and seasonal variability of temperature and salinity in Bransfield strait and Admiralty Bay, Antarctica. Polish Polar Research, 17(1-2), 29-42.

Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Ocean Acidification due to Increasing Atmospheric Carbon Dioxide. The Royal Society.

Robertson, J. & Watson, A. (1995). A summer-time sink for atmospheric carbon dioxide in the Southern Ocean between 88°W and 80°E. Deep Sea Research II. 42(4-5), 1081-1091. https://doi.org/10.1016/0967-0645(95)00067-Z

Rückamp, M., Braun, M., Suckro, S. & Blindow, N. (2011). Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change, 79(1-2), 99-109. https://doi.org/10.1016/j.gloplacha.2011.06.009

Ruiz-Halpern, S., Calleja, M., Dachs, J., Del Vento, S., Pastor, M., Palmer, M., Agustí, S. & Duarte, C. (2014). Ocean–atmosphere exchange of organic carbon and CO2 surrounding the Antarctic Peninsula. Biogeosciences, 11(10), 2755–2770. https://doi.org/10.5194/bg-11-2755-2014

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T. & Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. Science, 305(5682), 367–371. https://doi.org/10.1126/science.1097403

Sangrà, P., Gordo, C., Hernández-Arencibia, M., Marrero-Díaz, A., Rodríguez-Santana, A., Stegner, A., Martínez-Marrero, A., Pelegrí, J.L. & Pichon, T. (2011). The Bransfield current system. Deep Sea Res. Part I: Oceanogr. Res. Papers, 58(4), 390–402. https://doi.org/10.1016/j.dsr.2011.01.011

Sejr, M., Krause-Jensen, D., Rysgaard, S., Sorensen, L. L., Christensen, P. B., & Glud, R. N. (2011). Air—sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice. Tellus B: Chemical and Physical Meteorology, 63(5), 815-822. https://doi.org/10.1111/j.1600-0889.2011.00540.x

Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlege, N., Geruo, A., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., … Wouters, B. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219-235. https://doi.org/10.1038/s41586-018-0179-y

Takahashi, T., Feely, R. A., Weiss, R. F., Wanninkhof, R. H., Chipman, D. W., Sutherland, S. C. & Takahashi, T. T. (1997). Global air-sea flux of CO2: An estimate based on measurements of sea–air pCO2 difference. Proc. Natl. Acad. Sci., 94(16), 8292–8299. https://doi.org/10.1073/pnas.94.16.8292

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., ... Baar, H. J. W. D. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10), 554-577. https://doi.org/10.1016/j.dsr2.2008.12.009

Tranter, M., Huybrechts, P., Munhoven, G., Sharp, C., Brown, G., Jones, I. W., Hodson, A. J., Hodgkins, R. & Wadham, J. L. (2002). Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrations. Chemical Geology, 190(1–4), 33-44. https://doi.org/10.1016/S0009-2541(02)00109-2

Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods, 12(6), 351–362. https://doi.org/10.4319/lom.2014.12.351

Whitworth III, T., Nowlin Jr., W., Orsi, A. H., Locarnini, R. A. & Smith, S. G. (1994). Weddell sea shelf water in the Bransfield Strait and WeddellScotia confluence. Deep-Sea Research I., 41(4), 629-641. https://doi.org/10.1016/0967-0637(94)90046-9

Yentsch, C. & Menzel, D. (1963). A Method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Research and Oceanographic Abstracts, 10(3), 221-231. https://doi.org/10.1016/0011-7471(63)90358-9

Zhou, M., Niiler, P.P.& Hu, J.H. (2002). Surface currents in the Bransfield and Gerlache Straits, Antarctica. Deep Sea Res. Part I: Ocean. Res. Pap., 49(2), 267–280. https://doi.org/10.1016/S0967-0637(01)00062-0

Published

2024-08-15

How to Cite

Carhuapoma, W., Graco, M., Vásquez, L., Ledesma, J., Gutiérrez, D., Tapia, P., Medina, K., Loarte, E., & León, H. (2024). CO2 fluxes in the Bransfield strait and surrounding areas of Elephant island during the austral summer 2018. Boletin Instituto Del Mar Del Perú, 39(2), e410. https://doi.org/10.53554/boletin.v39i2.410

Most read articles by the same author(s)

<< < 1 2