Caracterización geoquímica de los sedimentos de la plataforma continental asociados al afloramiento costero frente a Callao (12°S) y Pisco (14°S)

Autores/as

  • Juana Solís Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático https://orcid.org/0000-0002-5138-0301
  • Michelle Graco Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático https://orcid.org/0000-0002-6193-3256
  • Federico Velazco Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático https://orcid.org/0000-0003-4884-2728
  • Wilson Carhuapoma Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático https://orcid.org/0000-0001-8474-9710
  • Lisbeth Luciano Universidad Nacional Federico Villarreal, Lima, Perú
  • Juan Carlos Ernesto Fernández Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Junior Advíncula Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático

DOI:

https://doi.org/10.53554/boletin.v38i1.383

Palabras clave:

Materia orgánica, Sedimentos, Afloramiento, Callao, Pisco

Resumen

Las características biogeoquímicas de los sedimentos marinos y el agua intersticial de la plataforma continental frente a Callao (12°S) y Pisco (14°S), entre 2013 y 2019, fueron estudiadas como parte de los objetivos del proyecto nacional “Estudio integrado del Afloramiento Costero en el margen peruano”. Sedimentos con alta carga de materia orgánica total (> 13 %) se observaron tanto en Callao como en Pisco, incrementándose significativamente del Callao hacia la plataforma externa. Se registró alto contenido de carbono orgánico total, así como que el contenido de carbonato de calcio fluctuó, en promedio, entre 12 y 18 % para Callao y 15 y 18 % para Pisco, identificándose cambios temporales que reflejaron cambios oceanográficos. El cociente C/N en la plataforma continental frente a Callao y Pisco, varió entre 6 y 11, indicando el predominio de materia orgánica (MO) de origen fitoplanctónico. En el caso de Callao se observó MO más lábil en la plataforma externa mientras que, en la zona más costera se detectó disminución importante de nitrógeno, indicando intenso reciclaje en condiciones deficientes en oxígeno. El análisis de perfiles de pH y sulfuros, indican mayor actividad sulfato reductora en Callao que en Pisco. Sin embargo, con excepción de la estación más costera de Callao (E0) no se observó acumulación de sulfuros de hidrógeno, lo cual podría relacionarse con procesos de oxidación asociados a la presencia de metales redox sensitivos como el hierro.

Descargas

Los datos de descargas todavía no están disponibles.

Alternative Metrics

Métricas

Cargando métricas ...

Citas

Álvarez-Iglesias, P. & Rubio, B. (2012). Early diagenesis of organic-matter-rich sediments in a ria environment: Organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuar. Coast. Shelf Sci., 100, 113-123. https://doi.org/10.1016/j.ecss.2012.01.005

Bagarinao, T. (1992). Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquatic Toxicology, 24(1-2), 21-62. https://doi.org/10.1016/0166-445x(92)90015-F

Berner, R. (1980). Early diagenesis: a theoretical approach. Princeton University Press. Canfield, D. E. (1993). Organic matter oxidation in marine sediments. En R. Wollast, F. T. Mackenzie & L. Chou (Eds.), Interactions of Global Biogeochemical Cycles and Global Change (pp. 333–363). Springer. https://doi.org/10.1007/978-3-642-76064-8_14

Canfield, D. E., Thamdrup, B. & Hansen, J. W. (1993a). The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim, Acta, 57 (16), 3867-3883. https://doi.org/10.1016/0016-7037(93)90340-3

Canfield, D. E., Jørgensen, B. B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N. B., Thamdrup, B., Hansen, J. W., Nielsen, L. P. & Hall, P. O. (1993b). Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 113(1-2), 27–40. https://doi.org/10.1016/0025-3227(93)90147-N

Chavez, F. P. & Messié, M. (2009). A comparison of eastern boundary upwelling ecosystems. Progress in Oceanography, 83(1-4), 80-96. https://doi.org/10.1016/j.pocean.2009.07.032

Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., Gier, J., Hensen, C., Dengler, M., Stolpovsky, K., Bryant, L. D. & Wallmann, K. (2015). Organic carbon production, mineralization and preservation on the Peruvian margin. Biogeosciences, 12(5), 1537–1559. https://doi.org/10.5194/bg-12-1537-2015

Dean, W. (1974). Determination of Carbonate an Organic matter in calcareous sediments and rocks by loss on ignition: Comparison the others methods. Jour. Sed. Petrology, 44(1), 242-248.

https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D

Delgado, C. & Gomero, R. (1988). Textura, carbono orgánico y carbonatos de los sedimentos del margen continental peruano. Bol Inst Mar Perú, Vol. Extraordinario, 1-10. https://repositorio.imarpe.gob.pe/handle/20.500.12958/1073

Delgado, C. & Gomero, R. (1995). Atlas sedimentológico de la plataforma continental peruana. Inf Inst Mar Perú, (110), 1-32. https://repositorio.imarpe.gob.pe/handle/20.500.12958/411

Emeis, K. C. & Morse, J. W. (1990). Organic carbon, reduced sulfur, and iron relationships in sediments of the Peru margin, sites 680 and 688. Proceedings of the Ocean Drilling Program, Scientific Results, 112, 441-453. https://doi.org/10.2973/odp.proc.sr.112.151.1990

Emerson, S. & Hedges, J. I. (1988). Processes controlling the organic carbon content of open ocean sediment. Paleoceanography, 3(5), 621–634. https://doi.org/10.1029/PA003i005p00621

Farías, L., Salamanca, M. & Chuecas, L. (1994). Variaciones estacionales del flujo de partículas y contenido de materia orgánica a la interfase aguasedimento en bahía Concepción, Chile Central. Cienc. Tecnol. Mar, 17, 15-31.

Farías, L., Chuecas, L. & Salamanca, M. (1996). Effect of coastal upwelling on nitrogen regeneration from sediments and ammonium supply to the water column in Concepción bay, Chile. Estuar. Coast. Shelf. Sci., 43(2), 137-155. https://doi.org/10.1006/ecss.1996.0062

Friederich, G. E., Ledesma, J., Ulloa, O. & Chavez, F. P. (2008). Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Progress in Oceanography, 79(2-4), 156–166. https://doi.org/10.1016/j.pocean.2008.10.001

Froelich, P. N., Klinkhammer, G. P., Bender, M. L. Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. & Maynard, V. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43(7), 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4

Gaudette, H. E., Flight, W. R., Toner, L. & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, 44(1), 249–253. https://doi.org/10.1306/74D729D7-2B21-11D7-8648000102C1865D

Graco, M., Correa, D., García, W. & Sarmiento, M. (2016). Impactos del ENSO en la biogeoquímica del sistema de afloramiento frente a Perú central, febrero 2013 - diciembre 2015. Imarpe, Bol Trimestral Oceanográfico, 2(1), 2-6. https://biblioimarpe.imarpe.gob.pe/handle/20.500.12958/3039

Graco, M. I., Purca, S., Dewitte, B., Castro, C. G., Morón, O., Ledesma, J., Flores, G. & Gutiérrez, D. (2017). The OMZ and nutrient features as a signature of interannual and low-frequency variability in the Peruvian upwelling system. Biogeosciences, 14(20), 4601- 4617, https://doi.org/10.5194/bg-14-4601-2017, 2017

Gutiérrez, D., Enríquez, E., Purca, S., Quipúzcoa, L., Marquina, R., Flores, G. & Graco, M. (2008). Oxygenation episodes on the continental shelf of central Peru: Remote forcing and benthic ecosystem response. Progress in Oceanography, 79(2-4), 177-189. https://doi.org/10.1016/j.pocean.2008.10.025

Hedges, J. I. & Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49(2-3), 81-115. https://doi.org/10.1016/0304-4203(95)00008-F

Henrichs, S. & Farrington, J. (1984). Peru upwelling region sediments near 15°S. 1. Remineralization and accumulation of organic matter. Limnology and Oceanography, 29(1), 1-19. https://doi.org/10.4319/lo.1984.29.1.0001

Igarza, M., Boussafir, M., Graco, M., Sifeddine, A., Valdés, J. & Gutiérrez, D. (2021). Latitudinal variability of preserved sedimentary organic matter along the Peruvian continental margin as inferred from petrographic and geochemical properties. Marine Chemistry, 235, 104004. https://doi.org/10.1016/j.marchem.2021.104004

Jørgensen, B. B. (1982). Mineralization of organic matter in the seabed—the role of sulfate reduction. Nature, 296, 643–645.

Jørgensen, B. B. (1983). Processes at the sediment–water interface. En B. Bolin & R. B. Cook (Eds.), The major biochemical cycles and their interactions (pp.201–123). John Wiley.

Jørgensen, B. B., Revsbech, N. P. (1983). Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2 S microgradients. Appl. Environ. Microbiol., 45(4), 1261-1270. https://doi.org/10.1128/aem.45.4.1261-1270.1983

Klump, J. & Martens, C. (1987). Biogeochemical cycling an organic-rich coastal marine basin. 5. Sedimentary nitrogen and phosphorus budgets based upon kinetic models, mass balances, and the stoichiometry of nutrient regeneration. Geochim. Cosmochim. Acta, 51(5), 1161-1173. https://doi.org/10.1016/0016-7037(87)90209-2

Ledesma, J., Tam, J., León, V., Flores, G., & Morón, O. (2011). Caracterización de la Zona de Mínimo de Oxígeno (ZMO) frente a la costa peruana entre 3°N y 14°S, 1999–2009. Bol Inst Mar Perú, 26(1-2), 49–57. https://revistas.imarpe.gob.pe/index.php/boletin/article/view/115/108

León, V., Paulmier, A., Ledesma, J., Croot, P., Graco, M., Flores, G., Morón, O. & Tenorio, J. (2011). pH como un trazador de la variabilidad biogeoquímica en el Sistema de Humboldt. Bol Inst Mar Perú, 26(1–2), 19-24. https://revistas.imarpe.gob.pe/index.php/boletin/article/view/120/112

Libes, S. (1992). An introduction to marine biogeochemistry. John Wiley and Sons.

Middelburg, J. J. & Levin, L. A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6, 1273–1293. https://doi.org/10.5194/bg-6-1273-2009

Monteiro, P., Dewitte, B., Scranton, M., Paulmier, A. & van der Plas, A. (2011). The role of open ocean boundary forcing on seasonal to decadalscale variability and long-term change of natural shelf hypoxia. Environ. Res. Lett., 6(2), 2-18. https://doi.org/10.1088/1748-9326/6/2/025002

Muller, P. J. & Suess, E. (1979). Productivity, sedimentation rate, and sedimentary organic matter in the oceans: I. Organic carbon preservation. Deep-Sea Research, 26(12), 1347–1362. https://doi.org/10.1016/0198-0149(79)90003-7

Nilsen, E. & Delaney, M. (2005). Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta. Estuaries, 28, 653-663. https://doi.org/10.1007/BF02732904

Pedersen, T. F. & Calvert, S. E., (1990). Anoxia versus productivity: what controls formation of organic carbon-rich sediments and sedimentary rocks?. American Association of Petroleum Geologists Bulletin, 74(4), 454-466. https://doi.org/10.1306/0C9B232B-1710-11D7-8645000102C1865D

Quesquén, R., Ayón, P. & Vásquez, L. (2017). Moluscos Holoplanctónicos (Mollusca: Heteropoda y Thecosomata) como indicadores de la variabilidad oceanográfica y del evento El Niño frente a Callao y Pisco, del 2013 al 2015. Imarpe, Bol trimestral oceanográfico, 2(1), 12-16. https://biblioimarpe.imarpe.gob.pe/handle/20.500.12958/3041

Redfield, A., Ketchum, B. & Richards, F. (1963). The influence of organisms on the composition of water. In: M. N. Hill (Ed.). The Sea (pp. 26 - 77). Jhon Wiley.

Schunck, H., Lavik, G., Desai, D. K., Grosskopf, T., Kalvelage, T., Löscher, C., Paulmier, A., Contreras, S., Siegel, H., Holtappels, Rosenstiel, P., Schilhabel, M. B., Graco, M., Schmitz, R. A., Kuypers, M. M. M. & LaRoch, J. (2013). Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS ONE, 8(8), e68661. https://doi.org/10.1371/journal.pone.0068661

Simpson, R., Astudillo, C., & Acevedo, F. (2005). A new methodology for the optimal design of batch fermentation plants. Biochemical Engineering Journal, 27(2), 155–160. https://doi.org/10.1016/j.bej.2005.08.003

Sommer, S., Gier, J., Treude, T., Lomnitz, U., Dengler, M., Cardich, J. & Dale, A. W. (2016). Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes. Deep-Sea Res., I(112), 113–122. https://doi.org/10.1016/j.dsr.2016.03.001

Stein, R. (1991). Accumulation of organic carbon in marine sediments Lecture notes in earth sciences. Springer. Strickland, J. D. H. & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, (167), 1-311. http://dx.doi.org/10.25607/OBP-1791

Suess, E., Kulm, L. D. & Killingly, J. S. (1987). Coastal upwelling and a history of organic-rich mudstone deposition off Peru. Geological Society Special Publications, 26, 181–197. https://doi.org/10.1144/GSL.SP.1987.026.01.11

Yücel, M., Konovalov, S. K., Moore, T. S., Janzen, C. P. & Luther III, G. W. (2010). Sulfur speciation in the upper Black Sea sediments. Chem. Geol., 269(3-4), 364-375. https://doi.org/10.1016/j.chemgeo.2009.10.010

Descargas

Publicado

2023-10-10

Cómo citar

Solís, J., Graco, M., Velazco, F., Carhuapoma, W., Luciano, L., Fernández, J. C. E., & Advíncula, J. (2023). Caracterización geoquímica de los sedimentos de la plataforma continental asociados al afloramiento costero frente a Callao (12°S) y Pisco (14°S). Boletin Instituto Del Mar Del Perú, 38(1), 94–113. https://doi.org/10.53554/boletin.v38i1.383

Artículos más leídos del mismo autor/a