Flujos de material particulado y formación de una lámina de sedimentos en la plataforma continental interna frente al Callao durante El Niño Costero 2017
DOI:
https://doi.org/10.53554/boletin.v36i2.346Palabras clave:
Paleoceanografia, Paleoclimatología, Sedimentos, Sedimentos marinos, CallaoResumen
Durante la ocurrencia de El Niño Costero 2017, en la bahía del Callao se instalaron dos trampas de sedimento (mecánica y automática) a 30 y 40 m de profundidad para obtener muestras e información de los flujos de material particulado en el subsistema bentónico. La trampa mecánica (30 m) registró acumulación equivalente a 6,46 cm/año; la automática, entre el 20 y 29 de marzo 2017, recolectó 8.777,9 mg.m-2día-1, asociados a las máximas descargas del río Rímac. En el área somera, donde estuvieron las trampas, y en la plataforma continental adyacente (96 m de profundidad) testigos de sedimentos no perturbados (recolectados entre 2017 y 2018) se destinaron para determinar i) el contenido orgánico del primer centímetro superficial del sedimento durante y después de los máximos aportes fluviales del río a la bahía y, ii) los cambios en la estructura sedimentaria así como del contenido terrígeno en los sedimentos, empleando el nivel gris de las radiografías de los testigos de sedimentos. Estos testigos mostraron acumulación de hasta 4 cm de sedimento durante el 2017 y 2018 así como efectos de bioturbación y erosión por las corrientes. A 94 m de profundidad fue formada y preservada una lámina de 1 cm de espesor, color marrón oliva claro a marrón oliva con alta razón de carbono total y nitrógeno total (CT/NT) (12,19 en febrero, 10,26 en abril), que denotan el origen terrestre de la materia orgánica en contraste con la razón CT/NT de 4,88 encontrada en agosto. El
alto contenido de partículas de origen terrígeno (que está asociado al color claro de esa lámina) se explica por el aporte de sedimentos acarreados por los extraordinarios caudales del río Rímac. La información obtenida de los proxies tales como el espesor de esta lámina formada durante El Niño Costero 2017 y sus características preservadas en la ‘capa fangosa de la plataforma’ o Shelf mud layer, influenciada por la Zona de Mínimo Oxígeno, puede ser aplicada para calibrar proxies de reconstrucción de pasados episodios de erosión fluvial causados por extremas precipitaciones en la cuenca del río Rímac.
Descargas
Alternative Metrics
Métricas
Citas
AGI. 1984. Dictionary of Geological Terms. American Geosciences Institute (AGI). Third Edition. Robert L Bates and Julia A Jackson, Editors. Anchor Books
Addison J, Finney B, Jaeger J, Stoner J, Norris R, Hangsterfer A. 2013. Integrating satellite observations and modern climate measurements with the recent sedimentary record: An example from Southeast Alaska. Journal of Geophysical Research: Oceans, Volume 118, Issue 7 p. 3444-3461
Armas V. 2017. Trabajos de descolmatación del río Rímac a consecuencia del Fenómeno “El Niño”. Bitácora Hidrográfica. Dirección de Hidrografía y Navegación de la Marina. Callao. Nº 17: 24-25.
Abrantes F, Lopes C, Rodrigues T, Gil I, Witt L, Grimalt J, Harris I. 2009. Proxy calibration to instrumental data set: Implications for palaeoceanographic reconstructions, Geochem. Geophys. Geosyst. 10:Q09U07. doi:10.1029/2009GC002604
Briceño-Zuluaga F J, Sifeddine A, Caquineau S, Cardich J, Salvatteci R, Gutierrez D, Ortlieb L, Velazco F, Boucher H, Machado C. 2016. Terrigenous material supply to the Peruvian central continental shelf (Pisco, 14° S) during the last 1000 years: Paleoclimatic implications. Climate of the Past. 12(3): 787-798.
Briceño-Zuluaga F J, Castagna A, Rutlant J, FloresAqueveque V, Caquineau S, Sifeddine A, Velazco F, Gutierrez D, Cardich J. 2017. Paracas dust storms: Sources, trajectories and associated meteorological conditions. Atmospheric Environment. doi: 10.1016/j.atmosenv.2017.06.019.
Brodie I, Kemp A. 1994. Variation in biogenic and detrital fluxes and formation of laminae in late Quaternary sediments from the Peruvian coastal upwelling zone. Marine Geology. 116: 385-398.
Buesseler K, Antia A, Chen M, Fowler S, Gardner W, Gustafsson O, Harada K, Michaels A, van der Loeff M, Sarin M, Steinberg D, Trull T. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. Journal of Marine Research. 65: 345–416.
Bull D, Kemp A. 1995. Composition and origins of laminae in late Quaternary and Holocene sediments from the Santa Barbara Basin. Proceedings of the Ocean Drilling Program. Scientific Results. 146: 77-87.
Candelario J. 2017. Sistema de Información Geográfica en la desembocadura del río Rímac. Dirección de Hidrografía y Navegación de la Marina. Callao. Bitácora Hidrográfica. 17: 26-29.
Correa D, Tam J, Pasapera J, Saavedra M, Ingunza A. 2017. Modeling of marine circulation and hypothetical discharges in Callao Bay, Peru. Journal Research in Marine Sciences. 2(3): 156-176.
Cuenca, V. 2017. Impacto Ambiental del comportamiento Hidrometeorológico en la cuenca del río Rímac zona de Chosica, durante eventos “El Niño” 1982-83, 1997-98 y 2016- 17. Lima. Fac. Ing. Ambiental. Univ. César Vallejo. Lima.
Curry W, D. Ostermann D. 1997. Ground-truthing the paleoclimate record - Sediment trap observations aid paleoceanographers. Oceanus. 40: 11-14.
Dreyer J. 2011. Origin and palaeoceanographic significance of laminations in hemipelagic bio siliceous sediments: examples from the Peru Margin and the Monterey formation, California. Master Thesis. Faculty of California State University, Monterey Bay.
ENFEN. 2017. Informe Técnico Extraordinario Nº 001. El Niño Costero.
Guiñez M, Valdéz J, Sifeddine A. 2010. Variabilidad espacial y temporal de la materia orgánica sedimentaria, asociada a la Zona de Mínimo Oxígeno (ZMO) en un ambiente costero del norte de la corriente de Humboldt, bahía de Mejillones, Chile. Lat. Am. J. Aquat. Res. 38(2): 242-253.
Guillén O, Delgado C, Poma R. 1985. Distribución de plomo, cobre, zinc y cadmio en sedimentos del Puerto del Callao. Inf Inst Mar Perú. Proyecto OEA. Callao.
Gorsline D S, Kolpack R L, Karl H A, Drake D E, Fleischer P, Thornton S E, Scwalbach J R, Savrda C E. 1984. Studies of fine-grained sediment transport processes and products in the California Continental Borderland. In: D.A.V. Stow and D.J.W. Piper (Ed.). Fine Grained Sediments: Deep-Water Processes and Facies. Spec. Publ. Geol. Soc. London. 15: 395-496.
Gutiérrez D, Enríquez E, Purca S, Quipúzcoa L, Marquina R, Flores G, Graco M. 2008. Oxygenation episodes on the continental shelf of central Peru: Remote forcing and benthic ecosystem response. Progress in Oceanography. 79: 177–189.
Gutiérrez D, Sifeddine A,Reyss J L, Vargas G, Velazco F, Salvatteci R, Ferreira-Bartrina V, Ortlieb L, Field D, Baumgartner T, Boussafir M, Boucher H, Valdes J, Marinovic L, Soler P, Tapia P. 2006. Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystems during the last two centuries. Advances in Geosciences. 6: 119–125.
HIDRONAV. 1995. Derrotero de la Costa del Perú. Dirección de Hidrografía y Navegación de la Marina. Callao. Vol. I, 3º Ed.
Kemp A E S. 1990. Sedimentary fabrics and variation in lamination style in Peru continental margin upwelling sediments. Proc. ODP, Sci. Results. 112: 43-58.
Kemp A. 1996. Laminated sediments as paleo-indicators. In: Paleoclimatology and paleoceanography from laminated sediments. Geological Society Special Publications. The Geological Society. London. 116: vii-xii.
Krissek K, Sheidegger K, Kulm L. 1980. Surface sediments of the Peru-Chile continental margin and the Nazca plate. Geological Society of America Bulletin. Part 1(91): 321-331.
Mendoza U. 2018 Instructivo de recibimiento, fraccionamiento, tamizado y análisis de muestras colectadas con trampas de sedimento automática. Laboratorio de Geología Marina. AFIOQG. DGIOCC. IMARPE.
Moreno A. 2002. Registro del aporte de polvo de origen sahariano y de la productividad oceánica en la Cuenca del Norte de Canarias y en el Mar de Alborán. Respuesta a los últimos 250.000 años de cambio climático. Tesis para Optar grado de Doctor en Ciencias Geológicas. Universitat de Barcelona. Departament de Geodinàmica i Geofísica. Universitat de Barcelona. http://hdl.handle.net/10803/1915
Palacios O, Caldás J, Vela Ch. 1992. Geología de los cuadrángulos de Lima, Lurín, Chancay y Chosica. Serie A. Carta Geológica Nacional. Boletín del Instituto Geológico, Minero y Metalúrgico, Lima. 43: 162 pp.
Ramos C, Guzmán E, Choque E. 2017. Estimación preliminar de la evolución morfodinámica del delta del Río Rímac producto del fenómeno El Niño Costero. Dirección de Hidrografía y Navegación de la Marina. Callao. Bitácora Hidrográfica. 17: 11-14.
Rein B, Siroko F, Luckge A, Reinhardt L, Wolf A, Dullo W. 2005. Abrupt change of El Niño activity off Peru during stage MIS 5e-d. In: Siroko, F., Litt, T., Claussen, M., Sanchez-Goni, F. (Eds.). The Climate of the Past Interglacials.
Rein B. 2007. How do the 1982/83 and 1997/98 El Niño Rank in a geological record from Peru? Quaternary International 161: 56-66.
Renard K, Lane H. 1975. Sediment yield as related to scholastic model of ephemeral run off. In: Present and prospective technology for predicting yields and sources. Ref. ARS-1-40, U.S. Dep. of Agriculture. Agricultural
Research Station, Southern Region, New Orleans. Romero A, Guadalupe E, Blas W. 2010. Estimado de descargas máximas en la microcuenca de Huaycoloro (Huachipa – Lima). Rev. del Instituto de Investigación FIGMMG-UNMSM. 13(25): 109-116.
Orozco R, Castillo S, Fernández E, Fierro C, Morón O, Solís J, Flores G. 1999. Contaminación sobre ecosistema marino del Callao en abril y setiembre. Inf Prog. Inst Mar Perú.
Salvatteci R, Field D, Sifeddine A, Ortlieb L, Gutierrez, Ferreira V, Baumgartner T, Caquineau S, Velazco F, Reyss J, Sanchez-Cabeza J, Gutierrez D. 2014. Cross stratigraphist from a seismically active mud lens off Peru indicate horizontal extensions of laminae, missing sequences, and a need for multiple cores for high resolution records. Marine Geology. 357: 72–89.
Salvatteci R, Schneider R, Blanz T, Mollier-Vogel E. 2019. Deglacial to Holocene Ocean temperatures in the Humboldt Current System as indicated by alkenone paleothermometry. Geophysical Research Letters, 46, 281-292. https://doi.org/10.1029/2018GL080634
Scheffer F, Schachtschabel P. 1984. Lehrbuch der Bodenkunde. Enke Verlag, Stuttgart. 442 pp.
Scheidegger, Kenneth F, Krissek, Lawrence A. 1982. Dispersal and deposition of eolian and fluvial sediments off Peru and northern Chile. Geological Society of America Bulletin. 93(2): 150. doi:10.1130/00167606(1982)93<150:dadoea>2.0.co;2
Sifeddine A, Gutierrez D, Ortlieb L, Boucher H, Velazco F, Field D, Vargas G, Boussafir M, Salvatteci R, Ferreira V, García M, Valdes J, Caquineau S, MandengYogo M, Cetin F, Solis J, Soler P, Baumgartner T, 2008. Laminated sediments from the central Peruvian continental slope: a 500-year record of upwelling system productivity, terrestrial runoff and redox conditions. Progress in Oceanography. 79: 190–197.
Takahashi K, Martinez A. 2017. The very strong coastal El Niño in 1925 in the far‑eastern Pacific. Clim Dyn. DOI 10.1007/s00382-017-3702-1
Takahashi K. 2017. Fenómeno El Niño Global vs “Costero”. Boletín Técnico El Niño – IGP. 4(4): 4-7.
Teves N, Laos G, Carrasco S, San Roman C, Pizarro L, Cardenas G, Romero A. 1996. Sea-Level Rise along the Lima Coastal Zone, Perú, as a Result of Global Warming: Environmental Impacts and Mitigation Measures. In: Smith J.B. et al. (eds) Adapting to Climate Change. Springer, New York, NY.
Thornton S E. 1984. Basin model for hemipelagic sedimentation in a tectonically active continental margin: Santa Barbera Basin, California Continental Borderland. In: D.A.V. Stow and D.J.W. Piper (Editors), Fine Grained Sediments: Deep-Water Processes and Facies. Spec. Publ. Geol. Soc. London. 15: 481-496.
Tylmann W, Kinder M, Żarczyński M, Poraj-Górska A. 2016. Preliminary characteristics of laminations in recent sediments from lakes Kamenduł and Perty in the Suwałki Landscape Park, northeastern Poland. Limnol. Rev. 16(4): 237–245.
Velazco F. 2001. Geología Marina y ambiental del área entre la bahía del Callao y Ventanilla. Tesis Ing. Geólogo. Universidad Nacional de Ingeniería.
Velazco F. 2011. Sedimentos marinos superficiales en la bahía del Callao, Perú. 1997. Bol Inst Mar Perú. 26(1-2): 75-82. https://revistas.imarpe.gob.pe/index.php/boletin/article/view/113
Yseki M. 2018. Variabilidad del flujo y tipo de transporte de material terrígeno hacia el margen continental en la costa central del Perú durante la última desglaciación (18-12 ka) BP. Tesis Maestría Ciencias del Mar, Univ. Peruana Cayetano Heredia. 114 p.
Wefer G, Berger W, Bijma J, Fisher G. 1999. Clues to Ocean History: a Brief overview of proxies. In: Use of proxies in Paleoceanography: Examples from the South Atlantic. 68 pp.
Zeynep E, Schönfeld J, Glock N, Marcus D, Mosch T, Sommer S, Elger J, Eisenhauer A. 2016. Peruvian sediments as recorders of an evolving hiatus for the last 22 thousand years. Quaternary Science Reviews. 137. 10.1016/j.quascirev.2016.01.029.
Zuta S, Guillen O. 1970. Oceanografía de las aguas costeras del Perú. Bol Inst Mar Perú. 26(1-2): 75-82.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Boletin Instituto del Mar del Perú
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.