Contribution of Kelvin waves to thermal anomalies in coastal waters off Peru during El Niño 2015/16 and the 2017 coastal El Niño

Authors

  • Tony Anculle Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Michelle Graco Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Luis Vásquez Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Walter García Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Dimitri Gutiérrez Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático

DOI:

https://doi.org/10.53554/boletin.v36i2.343

Keywords:

Ondas de Kelvin, Anomalías térmicas, Vientos alisios, El Niño Costero

Abstract

This paper compares the effect of remote (Kelvin waves) and local (winds) forcing on the thermal structure of the water column during El Niño 2015/16 and the 2017 coastal El Niño. To do this, we analyzed sea level and temperature anomaly data both in the equatorial Pacific and in the Peruvian coastal strip to estimate the propagation speed of the coastal-trapped wave during both events. In summer, temperature anomalies in the surface layer (<30 m) of up to +7 °C were determined for 2017 CEN mainly associated with the weakening of the southeasterly trade winds and, secondly, with the arrival of downwelling Kelvin
waves. Information on subsurface temperature was obtained from fixed coastal stations (≤100 m) located off Paita (5.06°S), Chicama (7.82°S), and Callao (12.03°S). On the other hand, during the previous event, El Niño 2015/16, temperature anomalies of up to +6 °C in a layer above 100 m occurred in the same stations (summer) but only associated with the arrival of downwelling Kelvin waves generated in the equatorial Pacific. The variation of zonal and meridional flow off the Gulf of Guayaquil and northern Peru were closely related to the anomalous warming in the surface layer. We propose that the changes during EN 2015/16 and La Niña 2016 (the occurrence of downwelling and upwelling Kelvin waves), together with the weakening of the South Pacific Anticyclone, contributed to the formation of 2017 CEN. Our results confirm that fixed coastal stations are strategically located for the study of the oceanographic manifestations of ENSO in the Southeast Tropical Pacific, especially in the area off the Gulf of Guayaquil and northern Peru. Also, they are key to monitor the variability of local winds and identify events similar to the 2017 CEN.

Downloads

Download data is not yet available.

Alternative Metrics

Metrics

Metrics Loading ...

References

Anculle T, Gutiérrez D, Chaigneau A, Chavez F. 2015. Anomalías del perfil vertical de temperatura del punto fijo Paita como indicador de la propagación de Ondas Kelvin. Boletín Trimestral Oceanográfico. Instituto del Mar del Perú. 1 (1-4): 6-8.

Aparco J, Mosquera K, Takahashi K. 2014. Flotadores Argo para el cálculo de la anomalía de la profundidad de la termoclina ecuatorial (aplicación operacional). Boletín técnico: Generación de modelos climáticos para el pronóstico de la ocurrencia del Fenómeno El Niño. 1(5): 8-9.

Barber R T, Chavez F P. 1983. Biological consequences of El Niño. Science. 222: 1203–1210. doi:10.1126/science.222.4629.1203

Behringer D, Xue Y. 2004. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean, paper presented at Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Ocean, and Land Surface, Am. Meteorol. Soc., Seattle, Wash.

Chavez F, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J. 2008. The Northern Humboldt Current System: brief history, present status and a view towards the future. Prog. Oceanogr. 79: 95–105.

Chaigneau A, Eldin G, Dewitte B. 2009. Eddy activity in the four major upwelling systems from altimetry (1992–2007). Progr. Oceanogr. 83: 117–123.

Cravatte S, Picaut J, Eldin G. 2003. Second and first baroclinic kelvin modes in the equatorial pacific intraseasonal time scales. J. Geophys. Res. 108(C8): 3266. http: //dx.doi.org/10.1029/2002JC001511

Dewitte B, Illig S, Renault L, Goubanova K, Takahashi K, Gushchina D, Mosquera K, Purca S. 2011. Modes of covariability between sea surface temperature and wind stress intraseasonal anomalies along the coast of Peru from satellite observations (2000–2008). J. Geophys. Res. 116: C04028. doi:10.1029/2010JC006495

Dewitte B, Vazquez-Cuervo J, Goubanova K, Illig S, Takahashi K, Cambon G, Purca S, Correa D, Gutierrez D, Sifeddine A, Ortlieb L. 2012. Change in El Niño flavours over 1958-2008: implications for the long-term trend of the upwelling off Peru. Deep Sea Res. II. 77–80: 143–156.

Echevin V, Albert A, Lévy M, Graco M, Aumont O, Piétri A, et al. 2014. Intraseasonal variability of nearshore productivity in the Northern Humboldt Current System: the role of coastal trapped waves. Cont. Shelf Res. 73: 14–30. doi: 10.1016/j.csr.2013.11.015

Echevin V, Colas F, Espinoza-Morriberon D, Anculle T, Vasquez L, Gutierrez D. 2018. Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador. Frontiers in Marine Science. 5: 367. doi:10.3389/fmars.2018.00367

ENFEN. 2016a. Informe Técnico No. 006-2016. Disponible en http://enfen.gob.pe/download/informe-tecnico-2016-6/

ENFEN. 2016b. Informe Técnico No. 003-2016. Disponible en http://enfen.gob.pe/download/informe-tecnico-2016-3/

ENFEN. 2017. Informe Técnico Extraordinario No. 001-2017/ENFEN El Niño Costero 2017. Disponible en http://enfen.gob.pe/download/informe-tecnico-el-ninocostero-2017/

Flores R, Tenorio J, Domínguez N. 2009. Variaciones de la Extensión Sur de la Corriente Cromwell frente al Perú entre 3 y 14°S. Bol Inst Mar Perú. 24(1 -2): 39-52.

Galdós A, Mosquera K. 2018. Observando el océano durante el evento El Niño costero 2017. Boletín técnico: Generación de información y monitoreo del Fenómeno El Niño. 5(1): 10-12.

Garreaud R D. 2018. A plausible atmospheric trigger for the 2017 coastal El Niño. Int. J. Climatol. doi:10.1002/joc.5426

Hu Z-Z, Huang B, Zhu J, Kumar A, McPhaden M J. 2018. On the variety of coastal El Niño events. Climate Dynamics. doi:10.1007/s00382-018-4290-4

Illig S, Bachèlery M L, Cadier E. 2018. Subseasonal coastal-trapped wave propagations in the southeastern Pacific and Atlantic Oceans: 2. Wave characteristics and connection with the equatorial variability. J. Geophys. Res. 123: 3942-3961.

Illig S, Dewitte B, Goubanova K, Cambon G, Boucharel J, Monetti F, Romero C, Purca S, Flores R. 2014: Forcing mechanisms of intraseasonal SST variability off Central Peru in 2000–2008. J. Geophys. Res. Oceans. 119: 3548–3573. doi:10.1002/2013JC009779

Imarpe. 2020. Informe Grupo de Trabajo Interdisciplinario de enero de 2020. Disponible en http://www.imarpe.gob.pe/imarpe/lista.php?id_seccion=I0138290000000000000000

Kessler W S, Mc Phaden M J. 1995. Oceanic equatorial waves and the 1991–1993 El Niño. J. Climate. 8: 1757–1774.

L’Heureux M, Takahashi K, Watkins A B, Barnston A, Becker E J, Di Liberto T E, Gamble F, Gottschalck J, Halpert M S, Huang B, Mosquera-Vásquez K, Wittenberg A. 2016. Observing and predicting the 2015- 16 El Niño. Bulletin of the American Meteorological Society. doi:10.1175/ BAMS-D-16-0009.1

McPhaden M J, Hayes S P. 1990. Variability in the eastern equatorial Pacific Ocean during 1986–1988. J. Geophysical Research. 95. doi: 10.1029/90JC00509

Mosquera K. 2014. Ondas Kelvin oceánicas y un modelo oceánico simple para su diagnóstico y pronóstico, Boletín Técnico “Generación de modelos climáticos para el pronóstico de la ocurrencia del Fenómeno El Niño”. Instituto Geofísico del Perú. 1(1): 4-7.

Mosquera K, Dewitte B. 2016. ¿Por qué las ondas Kelvin oceánicas no impactaron tanto la TSM en la costa de Perú durante el evento El Niño 2015/16? Boletín Técnico “Generación de modelos climáticos para el pronóstico de la ocurrencia del Fenómeno El Niño”. Instituto Geofísico del Perú. 3(3): 4 – 8.

Montes I. 2014. La circulación del Pacífico tropical este y su conexión con el Perú. Boletín Técnico «Generación de modelos climáticos para el pronóstico de la ocurrencia del Fenómeno El Niño», Instituto Geofísico del Perú. Abril. 1(4): 4-7.

Peng Q, Xie S –P, Wang D, Zheng X –T, Zhang H. 2019. Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño. Nature Communication. doi:10.1038/s41467-018-08258-8

Pizarro O, Montecinos A. 2005. El Niño y la Oscilación del Sur. Biología Marina y Oceanografía: Conceptos y Procesos. Trama Impresores SA, Concepción, Chile. 197 – 228.

Quispe-Ccalluari C, Chamorro A, Arellano C, Tam T. 2021. Comparación de ondas de Kelvin ecuatoriales y ondas atrapadas a la costa ocurridas durante El Niño 2015 – 16 y durante El Niño Costero 2017 frente a Perú: simulaciones y observaciones. Bol Inst Mar Perú. 36(2): 349 - 361.

Reiniger R F, Ross C F. 1968. A method of interpolation with application to oceanographic data. Deep-Sea Res. 9: 185 – 193.

Ridgway K R, Dunn J R, Wilkin J L. 2002. Ocean Interpolation by Four-Dimensional Weighted Least Squares -Application to the Waters around Australia. Journal of Atmospheric and Oceanic Technology. 19: 1357 – 1375.

Takahashi K, Martínez A G. 2017. The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim. Dyn. 1–27. doi: 10.1007/s00382-017-3702-1

Published

2022-05-16

How to Cite

Anculle, T., Graco, M., Vásquez, L., García, W., & Gutiérrez, D. (2022). Contribution of Kelvin waves to thermal anomalies in coastal waters off Peru during El Niño 2015/16 and the 2017 coastal El Niño. Boletin Instituto Del Mar Del Perú, 36(2), 362–384. https://doi.org/10.53554/boletin.v36i2.343

Most read articles by the same author(s)

1 2 > >>