Phytoplankton functional groups in the Northern Humboldt Current Ecosystem (NHCE)

Authors

  • Avy Bernales Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Jorge Tam Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Sonia Sánchez Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Nelly Jacobo Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Flor Chang Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Elcira Delgado Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • Liz Romero Instituto del Mar del Perú. Dirección General de Investigaciones en Oceanografía y Cambio Climático
  • H. Demarcq Institute of Research for Development (IRD)

DOI:

https://doi.org/10.53554/boletin.v37i1.358

Keywords:

Fitoplancton, Ecosistema, Corriente de Humboldt

Abstract

The Northern Humboldt Current ecosystem (NHCE), located in the southeastern Pacific off Peru, is one of the most productive natural systems worldwide. This area is of great relevance for the study of phytoplankton as the basis of the marine trophic web. Based on the relationships between the cell surface area, biovolume, and maximum linear dimension of the cells of the phytoplankton species, we found 140 species in the functional group ‘R’ (ruderal species, which are adaptable to high mixing conditions); 133 species in functional group ‘S’ (Stress-tolerant species, predominant in oligotrophic and high light conditions),
and 19 species in functional group ‘C’ (colonizing, opportunistic species,  predominant in mesotrophic and high light conditions). These three functional groups (FGs) are respectively formed by elongated, pennate, and chain-forming diatoms (group R); dinoflagellates, large central diatoms, and silicoflagellates (group S), and coccolithophores, some mixotrophic dinoflagellates, and phytoflagellates (group C). The percentages of coincidence between the morphometric classification of the FGs of this study and the ecological classification were between 52% and 90%. We propose the use of FGs to evaluate the spatio-temporal variations of phytoplankton and its relation with environmental conditions in the NHCE, whose turbulence levels are
lower than those recorded in Chilean fjords. 

Downloads

Download data is not yet available.

Alternative Metrics

Metrics

Metrics Loading ...

References

Alamo, A. (1989). Stomach contents of anchoveta (Engraulis ringens) 1974-1982, p. 105-108. In D. Pauly, P. Muck, J. Mendo and I. Tsukayama (eds.) The Peruvian upwelling ecosystem: dynamics and interactions. ICLARM Conference Proceedings 18, 438 p. Instituto

del Mar del Perú (IMARPE), Callao, Perú; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn, Federal Republic of Germany; and International Center for living Aquatic Resources Management (ICLARM), Manila, Philippines.

Allende. (2019). Phytoplankton functional group classifications as a tool for biomonitoring shallow lakes: a case study. Knowl. Manag. Aquat. Ecosyst., 420 (5).

Alves de Souza, C., Gonzáles, M., Iriarte, J. (2008). Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research, 30(11), 1233-1243.

Alvites, D. (2016). Variabilidad espacial y calcificación de las comunidades de cocolitofóridos en el sistema de afloramiento costero frente al Callao-Perú. Tesis Maestría Ciencias del Mar. UPCH.

Assmy, P., Smetacek, V., (2009). Algal blooms. Encyclopedia of Microbiology. Elsevier, Oxford, 27– 41. Https://doi.org/10.13140/2.1.4051.8081

Badylak, S., Edward, J., Philips, L. Mathews, L. (2014). Akashiwo sanguinea (Dinophyceae) blooms in a subtropical estuary. An alga for all seasons. Plankton Benthos Res, 9(3), 1–9.

Balch, W. I. M. (2018). The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores. Annu. Rev. Mar. Sci., 10, 71–98.

Bernales, A., Chang, F., Sánchez, S., Ledesma, J., Nelly, J., Quispe, J., Aramayo, V. (2011). Comportamiento nictimeral del fitoplancton frente al Callao (12°S), Perú. Bol Inst Mar Perú, 26 (1-2), 33 – 38.

Bravo-Sierra, E. (2004). Fitoflagelados potencialmente tóxicos y nocivos de costas del Pacífico mexicano. Rev. Biol. Trop., 52 (Suppl. 1), 5-16.

Brun, P., Vogt, M., Payne, M. R., Gruber, N., O’Brein Colleen, J., Buitenhuis, E. T., Le Quere, C., Leblanc K., Luo Ya-Wei. (2015). Limnol. Oceanogr., 60, 1020–1038

Falkowski, P. G. (1994). The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. Mar, 39(3), 235–258. doi: 10.1007/ BF00014586

Godrijan, J., Young, J., Maric, D., Precali, R. (2018). Coastal zones as important habitats of coccolithophores: A study of species diversity,

succession, and life-cycle phases. Limnol. Oceanogr, 63, 1692–1710.

Hong-Xian Yu, Jun-Hua Wu, Cheng-Xue Ma, Xue-Bo Qin. (2012). Seasonal dynamics of phytoplankton functional groups and its relationship with the environment in river: a case study in northeast China, Journal of Freshwater Ecology, 27, 3, 429-441, DOI:

1080/02705060.2012.667371

Kamenir, Y., Dubinsky, Z., Zohary, T. (2004). Phytoplankton size structure stability in a mesoeutrophic. Subtropical lake. Hidrobiologia, 520, 89. Doi. Org/10.1023/B:hydr.0000027729.53348.c7

Koiolek, J. P., Balasubramanian, K., Blanco, S., Coste, M., Ector, L., Liu, Y., Kulikovskiy, M., Lundholm, N., Ludwig, T., Potapova, M., Rimet, F., Sabbe, K., Sala, S., Sar, E., Taylor, J., Van de Vijver, B., Wetzel, C. E., Williams, D. M., Witkowski, A., Witkowski, J. (2019). DiatomBase. Neocalyptrella robusta (G. Norman ex Ralfs) Hernández- Becerril & Meave del Castillo, 1997. Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=345491 on 2019-09-16

Kruk, C., Peeters E., Van Nes Eh, Huszar V. L. M., Costa L. S., Scheffer, M. (2011). Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol Oceanogr, 56, 110–118.

Kruk, C., Devercelli, M., Huszar, V. L. M., Hernández, E., Beamud, G., Diaz, M., Silva, L. H. S., Segura, A. M. (2017). Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology,

(10), 1681- 1692. https://doi.org/10.1111/fwb.12968

Margalef, R. (1978). Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1, 493–509.

Moestrup, Ø., Akselmann-Cardella, R., Churro, C., Fraga, S., Hoppenrath, M., Iwataki, M., Larsen, J., Lundholm, N., Zingone, A. (Eds) (2009 en adelante). Lista de referencia taxonómica de la COI y la UNESCO de microalgas nocivas. Consultado en http://www.marinespecies.org/hab el 2020-09-03. doi: 10.14284 /362

Montagnes, D., Berges, J., Harrison, J., Taylor, F. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr., 39, 1044– 60.

Náquira, T. (2011). Caracterización de la estructura y diversidad funcional del fitoplancton de las bahías de Samanco, Sechura y Lagunillas, Perú. Tesis Maestría en Ecología Aplicada. UNALM.

Ochoa, N., Rojas de Mendiola, B., Gómez, O. (1985). Identificación del fenómeno “El Niño” a través de los organismos fitoplanctónicos. En: El Niño. Su impacto en la fauna marina. Bol Inst Mar Perú, vol. Volumen extraordinario, pp. 23-31.

Padisák, J., Crossetti, L. O., Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621, 1-19.

Reynolds, C. S. (1988). Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D.eds. Growth and Reproductive Strategies of Freshwater Phytoplankton Cambridge University Press.

Reynolds, C. S. (2006). Ecology of Phytoplankton. Cambridge University Press, Cambridge, 535 pp.

Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–428, http://plankt.oxfordjournals.org/cgi/content/ abstract/24/5/417

Rojas de Mendiola, B. (1981). Seasonal phytoplankton distribution along the Peruvian coast. En: Coastal upwelling. F.A. Richards (ed.), American Geophysical Union, Washington D.C. 348-356.

Rojas de Mendiola, B., Gómez, O., Ochoa, N. (1985). Efectos del Fenómeno “El Niño” sobre el fitoplancton. En: El Niño. Su impacto en la fauna marina.

Ruiz, G., Mac Donagh M. E., Quaíni, K., Solari, L. (2015). Life strategists and morpho-functional groups applied to the phytoplankton of a Pampean shallow lake, New Zealand Journal of Marine and Freshwater Research, 49, 1, 3-19. DOI: 10.1080/00288330.2014.920890

Salmaso, N., Padisak, J. (2007). Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia, 578, 97–112.

Sánchez, S., Bernales, A., Delgado, E., Chang, F. C., Jacobo, N. (2017). Variability and Biogeographical Distribution of Harmful Algal Blooms in Bays of High Productivity off Peruvian Coast (2012-2015). J Environ. Anal. Toxicol., 7, 530. doi: 10.4172/2161-0525.1000530

Sevindik, T. O., Celik, K., Naselli-Flores, L. (2017). Spatial heterogeneity and seasonal succession of phytoplankton functional groups along the vertical gradient in a mesotrophic reservoir. Ann. Limnol. -Int. J. Lim, 53, 129–141.

Sherman, K., Duda, A. M. (1999). An ecosystem approach to global assessment and management of coastal waters. Mar. Ecol. Prog. Ser. 190, 271-287.

Sherman, K., Hempel, G. (Editors). (2009). The UNEP Large Marine Ecosystem Report: A perspective on changing conditions in LMEs of the world´s Regional Seas. UNEP Regional Seas Report and Studies, United Nations Environment Programme. Nairobi, Kenya. Nº 182.

Shikata, T., Nagasoe, S., Oh, S., Matsubara, T., Yamasaki, Y., Shimasaki, Y., Oshihima, Y., Honjo, T. (2008) Effects of down- and upshocks from rapid changes of salinity on survival and growth of estuarine phytoplankters. J Fac Agr Kyushu Univ, 53, 81–87.

Smayda, T. J., Reynolds, C. S. (2001). Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J. Plankton Research, 23, 5, 447-461.

Smayda, T. J., Reynolds, C. S. (2003). Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research, 49(2), 95–106. doi: 10.1016/s1385- 1101(02)00219-8

Stoecker, D., Li, A., Wayne, D., Gustafson D. (1997). Mixotrophy in the dinoflagellate Prorocentrum minimum. Mar Ecol Prog Ser, 152, 1-12.

Stoecker, D., Hansen, P., Caron, D., Mitra. A. (2017). Mixotrophy in the Marine Plankton. Annual Review of Marine Science, 9, 1, 311- 335.

Sun, J., Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Research, 25, 11, 1331-1346.

Taylor, M. H. (2008). The Northern Humboldt Current Ecosystem and its resource dynamics: Insights from a trophic modeling and time series analysis. PhD Thesis. Bremen University.

Young, J. R. (1994). Variation in Emiliania huxleyi coccolith morphology in samples from the Norwegian EHUX experiment, 1992. Sarsia, 79, 417-425. doi:10.1080/00364827.1994.10413573

Published

2022-09-15

How to Cite

Bernales, A., Tam, J., Sánchez, S., Jacobo, N., Chang, F., Delgado, E., Romero, L., & Demarcq, H. (2022). Phytoplankton functional groups in the Northern Humboldt Current Ecosystem (NHCE). Boletin Instituto Del Mar Del Perú, 37(1), 51–76. https://doi.org/10.53554/boletin.v37i1.358

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.