Assessment of the attenuation coefficient and seawater transparency using Sentinel-2B satellite imagery in El Ferrol bay, Chimbote, Peru
DOI:
https://doi.org/10.53554/boletin.v40i2.436Keywords:
Attenuation coefficient, transparency, Secchi disk, Sentinel-2BAbstract
The attenuation coefficient (KdPAR) and seawater transparency in El Ferrol Bay, Chimbote, were assessed using single-band and multi-band modeling approaches based on Sentinel-2B satellite reflectance data. This study
aimed to evaluate and calibrate different empirical models to estimate both the attenuation coefficient and water transparency, integrating in situ observations collected in 2023 and 2024 with Sentinel-2B imagery. Due to frequent cloud cover, a cloud-masking threshold filter was applied to the May–June 2024 dataset. Following methodologies proposed in previous optical modeling studies, 51 models for KdPAR and 49 for transparency were tested to determine the best-performing relationships between satellite reflectance and field measurements. Comparative analysis with in situ data revealed that a simple linear regression model provided the most accurate estimation for KdPAR, while a power-law model yielded the best performance for transparency in both years. The reflectance difference between the 705 nm and 740 nm bands proved to be the most effective predictor variable for both parameters. The optimal equation for the diffuse attenuation coefficient was: KdPAR = 71,167 * (R705 - R740) + 0,285, R2 = 0.67, RMSE = 19.00, MAE = 14.97, and BIAS= +1.12. For water transparency (PDS), the best-fitting model was: PDS = 0,122 * (R705 - R740)-0,582, with R2 = 0.67, RMSE = 19.56, MAE = 15.54, and BIAS = 0.
Downloads
Alternative Metrics
Metrics
References
Aas, E., Høkedal, J. & Sørensen, K. (2014). Secchi depth in the Oslofjord-Skagerrak area: theory, experiments and relationships to other quantities. Ocean Sci., 10, 177-199. https://doi.org/10.5194/os-10-177-2014
Bishop, J. K. B. (1999). Transmissometer measurements of POC. Deep-Sea Research Part I: Oceanographic Research Papers, 46(2), 353-369. https://doi.org/10.1016/S0967-0637(98)00069-7
Caballero, I., Steinmetz, F. & Navarro, G. (2018). Evaluation of the first year of operational Sentinel-2A data for retrieval of suspended solids in medium-to high-turbidity waters. Remote Sensing, 10, 982. https://doi.org/10.3390/rs10070982
Castillo-Ramírez, A., Santamaría-del-Ángel, E., Gonzáles-Silvera, A., Frouin, R., Sebastiá-Frasquet, M. T., Tan, J., Lopez-Calderon, J., Sánchez-Velasco, L. & Enríquez-Paredes, L. (2020). A new algorithm to estimate diffuse attenuation coefficient from Secchi disk depth. Journal of Marine Science and Engineering, 8, 558. https://doi.org/10.3390/jmse8080558
Chapelle, F. H., Bradley, P. M., Mcmahon, P. B. & Lindsey, B. D. (2009). What does “water quality” mean?. Ground Water, 47(6), 752-754. http://dx.doi.org/10.1111/j.1745-6584.2009.00569.x
Davies-Colley, R. J. & Smith, D. G. (2001). Turbidity, suspended sediment, and water clarity: a review. Journal of the American Water Resources Association, 37(5), 1085-1101. https://doi.org/10.1111/j.1752-1688.2001.tb03624.x
Doxaran, D., Froidefond, J.-M. & Castaing, P. (2002). A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters. International Journal of Remote Sensing, 23(23), 5079-5085. https://doi.org/10.1080/0143116021000009912
Doxaran, D., Froidefond, J.-M., Castaing, P. & Babin, M. (2009). Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuarine, Coastal and Shelf Science, 81, 321-332. https://doi.org/10.1016/j.ecss.2008.11.013
Eidam, E. F., Langhorst, T., Goldstein, E. B. & McLean, M. (2022). Open OBS: Open-source, low-cost optical backscatter sensors for water quality and sediment-transport research. Limnology and Oceanography: Methods, 20, 46-59. https://doi.org/10.1002/lom3.10469
Erena, M., Domínguez, J. A., Aguado-Giménez, F., Soria, J. & García-Galiano, S. (2019). Monitoring coastal lagoon water quality through remote sensing: The Mar Menor as a case study. Water, 11, 1468. https://doi.org/10.3390/w11071468
ESA. (2021). S2 MPC Level-2A algorithm theoretical basis document. Ref. S2-PDGS-MPC-ATBD-L2A. https://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf
Gitelson, A. (1993). The nature of the peak near 700 nm on the radiance spectra and its application for remote estimation of phytoplankton pigments in inland waters. SPIE, 1971, 170-179. https://doi.org/10.1117/12.150992
Härmä, P., Vepsäläinen, J., Hannonen, T., Pyhälahti, T., Kämäri, J., Kallio, K., Eloheimo, K. & Koponen, S. (2001). Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. The Science of the Total Environment, 268, 107-121. https://doi.org/10.1016/S0048-9697(00)00688-4
Hou, X., Feng, L., Duan, H., Chen, X., Sun, D. & Shi, K. (2017). Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sensing of Environment, 190, 107-121. https://doi.org/10.1016/j.rse.2016.12.006
Kallio, K., Kutser, T., Hannonen, T., Koponen, S., Pulliainen, J., Vepsäläinen, J. & Pyhälahti, T. (2001). Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. The Science of the Total Environment, 268, 59-77. https://doi.org/10.1016/S0048-9697(00)00685-9
Kirk, J. T. O. (1994). Light & photosynthesis in aquatic ecosystems (2a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511623370
Koponen, S., Attila, J., Pulliainen, J., Kallio, K., Pyhälahti, T., Lindfors, A., Rasmus, K. & Hallikainen, M. (2007). A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland. Continental Shelf Research, 27, 228-244. https://doi.org/10.1016/j.csr.2006.10.006
Lathrop, R. G. & Lillesand, T. M. (1989). Monitoring water quality and river plume transport in Green Bay, Lake Michigan with SPOT-1 imagery. Photogrammetric Engineering and Remote Sensing, 55(3), 349-354. https://www.asprs.org/wp-content/uploads/pers/1989journal/mar/1989_mar_349-354.pdf
Lee, Z. P., Shang, S., Hu C., Du, K., Weidemann, A., Hou, W., Lin, J. & Lin, G. (2015). Secchi disk depth: a new theory and mechanistic model for underwater visibility. Remote Sensing Environment, 169, 139-149. https://doi.org/10.1016/j.rse.2015.08.002
Loayza, R. (1998). Génesis de la perturbación de la bahía El Ferrol. Universidad Nacional del Santa.
Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855-6899. https://doi.org/10.1080/01431161.2010.512947
Molner, J. V., Soria, J. M., Perez-Gonzalez, R. & Soria-Perpinya, X. (2023). Measurement of turbidity and total suspended matter in the Albufera of Valencia Lagoon (Spain) using Sentinel-2 images. J. Mar. Sci. Eng., 11, 1894. https://doi.org/10.3390/jmse11101894
Nababan, B., Ulfah, D. & Panjaitan, J. P. (2021). Light propagation, coefficient attenuation, and the depth of one optical depth in different water types. IOP Conf, Ser: Earth Environ. Sci., 944, 012047. https://doi.org/10.1088/1755-1315/944/1/012047
Nasa EARTHDATA. (s.f.). Sentinel-2MSI. Multispectral Imager. https://www.earthdata.nasa.gov/data/instruments/sentinel-2-msi
Olmanson, L. G., Bauer, M. E. & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, 112, 4086-4097. https://doi.org/10.1016/j.rse.2007.12.013
Petus, C., Chust, G., Gohin, F., Doxaran, D., Froidefond, J.-M. & Sagarminaga, Y. (2010). Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Continental Shelf Research, 30, 379-392. https://doi.org/10.1016/j.csr.2009.12.007
Poole, H. H. & Atkins, W. R. G. (1929). Photo-electric measurements of submarine illumination throughout the year. Journal of the Marine Biological Association of the United Kingdom, 16(1), 297-324. https://doi.org/10.1017/S0025315400029829
Potes, M., Joao M., Costa, O., Salgado, R., Bortoli, D., Serafim, A. & Le Moigne, P. (2013). Spectral measurements of underwater downwelling radiance of inland water bodies. Tellus A, 65, 20774. http://dx.doi.org/10.3402/tellusa.v65i0.20774
Preisendorfer, R. W. (1986). Secchi disk science: Visual optics of natural waters. Limnology and Oceanography, 31(5), 909-926. https://doi.org/10.4319/lo.1986.31.5.0909
Ritchie, J. C., Zimba, P. V. & Everitt, J. H. (2003). Remote sensing techniques to assess water quality. Photogrammetric engineering & remote sensing, 69(6), 695-704. https://doi.org/10.14358/PERS.69.6.695
Rodríguez, G., Potes, M., Costa, M. J., Novais, M. H., Penha, A. M., Salgado, R. & Morais, M. M. (2020). Temporal and spatial variations of Secci depth and difusse attenuations coeficient from Sentinel-2 MSI over a Large Reservoir. Remote Sens., 12(5), 768. https://doi.org/10.3390/rs12050768
Sampedro, Ó. & Salgueiro, J. R. (2015). Turbidimeter and RGB sensor for remote measurements in an aquatic medium. Measurement, 68, 128-134. https://doi.org/10.1016/j.measurement.2015.02.049
Sánchez, G., Travezaño, E. & García, V. (2008). Bahías El Ferrol y Coishco, Chimbote, Perú: Evaluación ambiental en abril y julio 2002. Inf Inst Mar Perú, 35(1), 7-26. https://hdl.handle.net/20.500.12958/1846
Sathyendranath, S. (Ed.). (2000). Remote sensing of ocean color in coastal, and other optically-complex waters (IOCCG Report Number 3). International Ocean-Colour Coordinating Group. https://ioccg.org/group/sathyendranath/
Tiarasani, A., Siregar, V. P. & Gaol, J. L. (2023). Estimation of diffuse coefficient attenuation (Kd490) using sentinel 2A in Panggang Island and its Surrounding Water. UIO Cibf, Ser,; Eartg Ebvurib, Sci, 1251, 012029. https://doi.org/10.1088/1755-1315/1251/1/012029
Tyler, J. E. (1968). The Secchi Disc. Limnology and Oceanography, 13(1), 1-6. https://doi.org/10.4319/lo.1968.13.1.0001
Verdin, J. P. (1985). Monitoring water quality conditions in a large western reservoir with Landsat imagery. Photocrammetric Engineering and Remote Sensin, 51(3), 343-353. https://www.asprs.org/wp-content/uploads/pers/1985journal/mar/1985_mar_343-353.pdf
Zapata, Hinestroza, J. A. (2021). Estimación del coeficiente de atenuación vertical de la radiación fotosintéticamente activa (Kd(PAR)), mediante el coeficiente de atenuación vertical de la luz difusa a 490 nm (kd(490)) [Tesis de Maestría, Universidad Autónoma de Baja California]. Repositorio Institucional UABC. https://hdl.handle.net/20.500.12930/9253
Zhan, Y., Delegido, J., Erena, M., Soria, J. M., Ruiz-Verdú, A., Urrego, P., Soria-Perpinya, X., Vicente, E. & Moreno, J. (2022). Mar Menor lagoon (SE Spain) chlorophyll-a and turbidity estimation with Sentinel-2. Limnetica, 41(2), 305-323. https://doi.org/10.23818/limn.41.18
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Boletin Instituto del Mar del Perú

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

