Biological parameters of the large jellyfish Chrysaora plocamia in central Peruvian coast, a ten-year study

Authors

  • Javier Quiñones Instituto del Mar del Perú, Oficina de Investigaciones en Depredadores Superiores, Callao, Perú. https://orcid.org/0000-0002-6193-8022
  • Alberto Lorenzo Instituto del Mar del Perú, Laboratorio Costero de Pisco, Perú. https://orcid.org/0000-0002-6831-4191
  • Ana Alegre Norza Sior Instituto del Mar del Perú, Dirección General de Investigaciones de Recursos Pelágicos, Área Funcional de Recursos Transzonales y Altamente Migratorios, Callao, Perú. https://orcid.org/0000-0001-8624-0491

DOI:

https://doi.org/10.53554/boletin.v39i2.409

Keywords:

jellyfish, seasonal size and occurrence, winter survival, Pisco, Peru

Abstract

We report size structure, seasonal abundance, and overwinter of the Scyphozoa Chrysaora plocamia in Peru. Size structure was determined at the seasonal (2007-2009 and 2012-2018) and monthly (2016-2017) scales in the Pisco area (13°42’S – 14°08’S). Abundance was determined employed two methods: 1) By-catch biomass (kg jellyfish 1000 m-3) in the artisanal purse-seine fishery (2016-2017), and 2) seasonal occurrence area (km2) in the water column (2004-2007) in Bahia Independencia. Overwinter was determined by year-round presence/absence. We found a continuous size increase through time, from juvenile during winter, reaching the highest sizes during fall. The same pattern was also observed at monthly scales (Generalized Additive Model - GAM edf=8.96). C. plocamia abundances in both methods showed a steep increase from spring to summer, then decreased in fall and almost disappear in winter. Principal component analysis indicates that most of the variation was explained by C. plocamia size and sea surface temperature. Correspondence analysis revealed that large jellyfish sizes were associated to summer and fall. Two mass die-offs events were recorded in early winter 2012 and 2018. We conclude that C. plocamia follows the classic Metagenetic Life Cycle. Still, the presence of very few adults during winter would be a tiny fraction of the local population.

Downloads

Download data is not yet available.

Alternative Metrics

Metrics

Metrics Loading ...

References

Agassiz, L. (1860). Contributions to the natural history of the United States of America. III. Second monograph, In five parts. – I. Acalephs in general. – II. Ctenophorae. – III. Discophorae. – IV. Hydroidae. – V. Homologies of the Radiata. Boston: Little, Brown & Company. https://archive.org/details/contributionston01agas/page/n11/mode/2up

Aguirre-Velarde, A., Thouzeau, G., Jean, F., Mendo, J., Cueto-Vega, R., Kawazo-Delgado, M., VásquezSpencer, J., Herrera-Sánchez, D., Vega-Espinoza, A. & Flye-Sainte-Marie, J. (2019). Chronic and severe hypoxic conditions in Paracas Bay, Pisco, Peru: Consequences on scallop growth, reproduction, and survival. Aquaculture, 512, 734259. https://doi.org/10.1016/j.aquaculture.2019.734259

Arai, M. N. (1997). Design and relationships. In: A Functional Biology of Scyphozoa. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1497-1_1

Attrill, M. J., Wright, J. & Edwards, M. (2007). Climaterelated increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography, 52(1), 480485. https://doi.org/10.4319/lo.2007.52.1.0480

Ayón, P., Swartzman, G., Espinoza, P. & Bertrand, A. (2011). Long-term changes in zooplankton size distribution in the Peruvian Humboldt Current System: conditions favouring sardine or anchovy. Marine Ecology Progress Series, 422, 2112–2122. https://doi.org/10.3354/meps08918

Båmstedt, U., Lane, J. & Martinussen, M. B. (1999). Bioenergetics of ephyra larvae of the scyphozoan jellyfish Aurelia aurita in relation to temperature and salinity. Marine Biology, 135, 89–98. https://doi.org/10.1007/s002270050605

Bayha, K. M., Collins, A. G. & Gaffney, P. M. (2017). Multigene phylogeny of the scyphozoan jellyfish family Pelagiidae reveals that the common US Atlantic sea nettle comprises two distinct species (Chrysaora quinquecirrha and C. chesapeakei). PeerJ, 5, e3863. https://doi.org/10.7717/peerj.3863

Bravo, V., Palma, S. & Silva, N. (2011). Seasonal and vertical distribution of medusae in Aysén region, southern Chile. Latin American Journal of Aquatic Research, 39(2), 359–377. https://www.redalyc.org/pdf/1750/175019398017.pdf

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification and Regression Trees. Chapman & Hall/CRC, Taylor & Francis Group. https://doi.org/10.1201/9781315139470

Brodeur, R. D., Sugisaki, H. & Hunt, Jr. G. L. (2002). Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series, 233, 89–103. https://doi.org/10.3354/meps233089

Brotz, L., Cheung, W. W., Kleisner, K., Pakhomovm, E. & Pauly, D. (2012). Increasing jellyfish populations: trends in Large Marine Ecosystems. Pp. 3-20. In J. E. Purcell, H. Mianzan & J. R. Frost (Eds.), Jellyfish Blooms: Interactions with Humans and Fisheries (pp. 3-20, Vol. 220). Springer. https://doi.org/10.1007/978-94-007-5316-7_2

Burke, W. D. (1976). Biology and distribution of the macrocoelenterates of Mississippi Sound and adjacent waters. Gulf and Caribbean Research, 5(2), 17–28. https://doi.org/10.18785/grr.0502.03

Calder, D. R. (1974). Strobilation of the sea nettle, Chrysaora quinquecirrha, under field conditions. The Biological Bulletin, 146(3), 326–334. https://doi.org/10.2307/1540408

Ceh, J., Gonzalez, J., Pacheco, A. S. & Riascos, J. M. (2015). The elusive life cycle of scyphozoan jellyfish– metagenesis revisited. Scientific reports, 5, 12037, 1–13. https://doi.org/10.1038/srep12037

Cereceda Quintanilla, I. C., García Zavaleta, A. D., López Abanto, W. H., Benavente Escobar, C. L., Aguirre Alegre, E. M., Guevara García, D. I. & Fernández, V. (2019). Geología del pisco, valle de Ica. Dirección de Geología Regional. Instituto Geológico, Minero y Metalúrgico. https://hdl.handle.net/20.500.12544/2268

Condon, R. H., Duarte, C. M., Pitt, K. A., Robinson, K. L., Lucas, C. H., Sutherland, K. R., Mianzan, H. W., Bogeberg, M., Purcell, J. E., Decker, M. B., Uye, S.-I., Madin, L. P., Brodeur, R. D., Haddock, H. D., Malej, A., Parry, G. D., Eriksen, E., Quiñones, J., Acha, M., Harvey, M., Arthur, J. M. & Graham, W. (2013). Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences, 110(3), 1000–1005. https://doi.org/10.1073/pnas.1210920110

Dawson, M. N., Cieciel, K., Decker, M. B., Hays, G. C., Lucas, C. H. & Pitt, K. A. (2015). Populationlevel perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms. Biological Invasions, 17, 851–867. https://doi.org/10.1007/s10530-014-0732-z

De’ath, G. & Fabricius, K. E. (2000). Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81(11), 3178–3192. https://doi.org/10.1890/0012-9658(2000)081%5b3178:CARTAP%5d2.0.CO;2

Decker, M. B., Cieciel, K., Zavolokin, A., Lauth, R., Brodeur, R. D. & Coyle, K. O. (2014). Population fluctuations of jellyfish in the Bering Sea and their ecological role in this productive shelf ecosystem. In K. Pitt, C. Lucas (Eds.), Jellyfish Blooms (pp. 153–183). Springer. https://doi.org/10.1007/978-94-007-7015-7_7

Dray, S., Dufour, A. B. & Thioulouse, J. (2020). Package ‘ade4’ Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences, version 1.7–15. https://cloud.r-project.org/ and http://pbil.univ-lyon1.fr/ADE-4

Dunn, P. (2020). Package ‘tweedie’ Evaluation of Tweedie Exponential Family Models, version 2.3.2. https://CRAN.R-project.org/package=tweedie

Gibbons, M., Skrypzeck, H., Brodeur, R. D., Riascos, J. M., Quiñones, J., Grobler, C. A., Roux, J. P., Field, J. C., Daly, E. A., Miller RE, Ras, V., Schiariti A., Chiaverano, L., Tjizoo, B.M., Prieto, L., Idrissi, H. & Palma, S. (2021). A comparative review of macromedusae in eastern boundary currents. In S. J. Hawkins, A. J. Lemasson, A. L. Allcock, A. E. Bates, M. Byrne, A J. Evans, L. B. Firth, E. M. Marzinelli, B. D. Russell, I. P. Smith, S. E. Swearer & P. A. Todd (Eds.), Oceanography and Marine Biology: An Annual Review (pp. 371-482, Vol. 59). CRC Press, Taylor & Francis. https://doi.org/10.1201/9781003138846

Graham, W. M., Pagès, F. & Hamner, W. M. (2001). A physical context for gelatinous zooplankton aggregations: a review. In J. E. Purcell, W. M. Graham & H. J. Dumont (Eds.), Jellyfish Blooms: Ecological and Societal Importance. Developments in Hydrobiology (pp. 199-212, Vol. 155). Springer. https://doi.org/10.1007/978-94-010-0722-1_16

Hastie, T. J. & Tibshirani, R. J. (1990). Generalized additive models (Monographs on statistics and applied probability, Vol. 43). Chapman & Hall/CRC. https://doi.org/10.1201/9780203753781

Higaki, K. & Torres, D. (2017). Distribución y concentración de larvas de Argopecten purpuratus “concha de abanico” (Lamarck 1819) en Bahía Paracas – Pisco, mayo - agosto 2017 [Tesis de Licenciatura]. Universidad Nacional San Luis Gonzaga.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. The Journal of Educational Psychology, 24(6), 417–441. https://doi.org/10.1037/h0071325

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4), 321–377. https://doi.org/10.2307/2333955

Imarpe (2020). Anomalías de la Temperatura Superficial del Mar – Pisco (13°42’33,4’’S, 76°13’18,5’’W) [Figura]. Laboratorio de Hidrofísica Marina, Dirección de Oceanografía y Cambio Climático, Instituto del Mar del Perú. http://www.imarpe.gob.pe/ftp/enso/imagenes/rw_serxmon_ATSM_PISCO.png

Júnior, M. N., Nagata, R. M. & Haddad, M. A. (2010). Seasonal variation of macromedusae (Cnidaria) at North Bay, Florianopolis, southern Brazil. Zoologia, 27(3), 377–386. https://doi.org/10.1590/S1984-46702010000300009

Leandro, S. M., Tiselius, P. & Queiroga, H. (2006). Growth and development of nauplii and copepodites of the estuarine copepod Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food conditions. Marine Biology, 150, 121–129. https://doi.org/10.1007/s00227-006-0336-y

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62, 399–402. https://doi.org/10.1080/01621459.1967.10482916

Lucas, C. H. (2001). Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia, 451, 229–246. https://doi.org/10.1007/978-94-010-0722-1_19

Lucas, C. H., Graham, W. M. & Widmer, C. (2012). Jellyfish life histories: role of polyps in forming and maintaining Scyphomedusa populations. Advances in Marine Biology, 63, 133–196. https://doi.org/10.1016/B978-0-12-394282-1.00003-X

Lucas, C. H. & Dawson, M. N. (2014). What are jellyfishes and thaliaceans and why do they bloom?. In K. Pitt & C. Lucas (Eds.), Jellyfish Blooms (pp. 9-44). Springer. https://doi.org/10.1007/978-94-007-7015-7_2

Mazlum, R., Aytan, Ü. & Agirbas, E. (2018). The feeding behaviour of Pleurobrachia pileus (Ctenophora: Tentaculata) in the southeastern Black Sea: in relation to area and season. Fresenius Environmental Bulletin, 27, 871–879.

Mendo, J., Wolff, M., Mendo, T. & Ysla, L. (2016). Scallop Fishery and Culture in Peru. In S. Shumway & J. Parsons (Eds.), Scallops: Biology, Ecology, Aquaculture, and Fisheries (3° ed., pp. 1089–1109). Elsevier. https://doi.org/10.1016/B978-0-444-62710-0.00028-6

Mianzan, H. W. (1989). Las medusas Scyphozoa de la Bahía Blanca, Argentina. Brazilian Journal of Oceanography, 37(1), 29–32. https://doi.org/10.1590/S0373-55241989000100003

Mianzan, H. W. & Cornelius, P. F. S. (1999). Cubomedusae and Scyphomedusae. In D. Boltovskoy (Ed.), South Atlantic zooplankton (pp. 513–559, Vol. 1). Blackuys Publishers.

Mianzan, H., Ramírez, F., Chiaverano, L. & Costello, J. (2005). ¿Un mar de gelatina?. Ciencia Hoy, 15(86), 48–55. http://hdl.handle.net/1834/32522

Mianzan, H., Quiñones, J., Palma, S., Schiariti, A., Acha, E. M., Robinson, K. L. & Graham, W. M. (2014). Chrysaora plocamia: a poorly understood jellyfish from South American waters. In K. Pitt, C. Lucas (Eds.), Jellyfish Blooms (pp. 219–236). Springer. https://doi.org/10.1007/978-94-007-7015-7_10

Morandini, A. C. & Marques, A. C. (2010). Revision of the genus Chrysaora Péron & Lesueur, 1810 (Cnidaria: Scyphozoa). Zootaxa, 2464(1), 1–97. https://doi.org/10.11646/zootaxa.2464.1.1

Morandini, A. C., Da Silveira, F. L. & Jarms, G. (2004). The life cycle of Chrysaora lactea Eschscholtz, 1829 (Cnidaria, Scyphozoa) with notes on the scyphistoma stage of three other species. Hydrobiologia, 530, 347–354. https://doi.org/10.1007/s10750-004-2694-0

Morandini, A. C., Schiariti, A., Stampar, S. N., Maronna, M. M., Straehler-Pohl, I. & Marques, A. C. (2016). Succession of generations is still the general paradigm for scyphozoan life cycles. Bulletin of Marine Science, 92(3), 343–351. https://doi.org/10.5343/bms.2016.1018

Morón, O. & Vásquez, L. (1996). Monitoreo oceanográfico pesquero en áreas seleccionadas (MOPAS). Paita - Chimbote - Callao - Pisco - Ilo (octubre 1995). Inf Prog Inst Mar Perú, 33, 3–52. https://hdl.handle.net/20.500.12958/1183

Olesen, N. J., Purcell, J. E. & Stoecker, D. K. (1996). Feeding and growth by ephyrae of Scyphomedusae Chrysaora quinquecirrha. Marine Ecology Progress Series, 137, 149–159. https://www.jstor.org/stable/24857070

Palma, S., Silva, N., Retamal, M. C. & Castro, L. (2011). Seasonal and vertical distributional patterns of siphonophores and medusae in the Chiloé Interior Sea, Chile. Continental Shelf Research, 31(3-4), 260–271. https://doi.org/10.1016/j.csr.2010.04.007

Palma, S., Córdova, P., Silva, N. & Silva, C. (2014). Biodiversity and spatial distribution of medusae in the Magellan Region (Southern Patagonian Zone). Latin American Journal of Aquatic Research, 42(5), 1175–1188. https://doi.org/10.3856/vol42-issue5-fulltext-21

Palomares, M. L. D. & Pauly, D. (2008). The growth of jellyfishes. Hydrobiologia, 616, 11–21. https://doi.org/10.1007/s10750-008-9582-y

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space (PDF). Philosophical Magazine, 2, 559–572. https://doi.org/10.1080/14786440109462720

Platt, T., Fuentes-Yaco, C. & Frank, K. T. (2003). Marine ecology: spring algal bloom and larval fish survival. Nature, 423, 398–399. https://doi.org/10.1038/423398b

Purcell, J. E., White, J. R., Nemazie, D. A. & Wright, D. A. (1999). Temperature, salinity, and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series, 180, 187–196. https://www.jstor.org/stable/24852101

Purcell, J. E., Juhl, A.R., Mańko, M. K. & Aumack, C. F. (2018). Overwintering of gelatinous zooplankton in the coastal Arctic Ocean. Marine Ecology Progress Series, 591, 281–286. https://doi.org/10.3354/meps12289

Quiñones, J. (2008). Chrysaora plocamia Lesson, 1830 (Cnidaria, Scyphozoa), frente a Pisco, Perú. Inf Inst Mar del Perú, 35(3), 221–230. https://hdl.handle.net/20.500.12958/1972

Quiñones, J., Monroy, A., Acha, E. M. & Mianzan, H. (2013). Jellyfish bycatch diminishes profit in an anchovy fishery off Peru. Fisheries Research, 139, 47–50. https://doi.org/10.1016/j.fishres.2012.04.014

Quiñones, J., Mianzan, H., Purca, S., Robinson, K. L., Adams, G. D. & Acha, E. M. (2015). Climate-driven population size fluctuations of jellyfish (Chrysaora plocamia) off Peru. Marine Biology, 162, 2339–2350. https://doi.org/10.1007/s00227-015-2751-4

Quiñones, J., Chiaverano, L. M., Ayón, P., Adams, G. S., Mianzan, H. W. & Acha, E. M. (2018). Spatial patterns of large jellyfish Chrysaora plocamia blooms in the Northern Humboldt Upwelling System in relation to biological drivers and climate. ICES Journal of Marine Science, 75(4), 1405–1415. https://doi.org/10.1093/icesjms/fsy004

Riascos, J. M., Villegas, V. & Pacheco, A. S. (2014). Diet composition of the large scyphozoan jellyfish Chrysaora plocamia in a highly productive upwelling center off northern Chile. Marine Biology Research, 10(8), 791–798. https://doi.org/10.1080/17451000.2013.863353

Russell, F. S. (1970). The Medusae of the British Isles. Cambridge University Press. Schiariti, A., Kawahara, M., Uye, S. -I. & Mianzan, H. W. (2008). Life cycle of the jellyfish Lychnorhiza lucerna (Scyphozoa: Rhizostomeae). Marine Biology, 156(1), 1–12. https://doi.org/10.1007/s00227-008-1050-8

Schiariti, A., Dutto, M. S., Pereyra, D. Y., Siquier, G. F. & Morandini, A. C. (2018). Medusae (Scyphozoa and Cubozoa) from southwestern Atlantic and Subantarctic region (32-60S, 34-70W): species composition, spatial distribution and life history traits. Latin American Journal of Aquatic Research, 46(2), 240–257. http://dx.doi.org/10.3856/vol46-issue2-fulltext-1

Smyth, G. (2020). Package ‘statmod’ Statistical Modeling, version 1.4.35. https://CRAN.R-project.org/package=statmod

Spearman, C. (1904). General intelligence objectively determined and measured. The American Journal of Psychology, 15(2), 201–293. https://doi.org/10.2307/1412107

Sullivan, B. K., Suchman, C. L. & Costello, J. H. (1997). Mechanics of prey selection by ephyrae of the scyphomedusa Aurelia aurita. Marine Biology, 130, 213–222. https://doi.org/10.1007/s002270050241

Takahashi, K. (2005). The annual cycle of heat content in the Peru Current region. Journal of Climate 18(23), 4937–4954. https://doi.org/10.1175/JCLI3572.1

Takahashi, K., Mosquera Vásquez, K. A. & Reupo Vélez, J. A. (2014). El Índice Costero El Niño (ICEN): historia y actualización. Boletín técnico: Generación de modelos climáticos para el pronóstico de la ocurrencia del Fenómeno El Niño, 1(2), 8-9. http://hdl.handle.net/20.500.12816/4639

Therneau, T., Atkinson, B. & Ripley, B. (2019). Package ‘rpart’ Recursive Partitioning and Regression Trees, version 4.1.15. https://cran.r-project.org/web/packages/rpart/index.html

Titelman, J., Riemann, L., Sørnes, T. A., Nilsen, T., Griekspoor, P. & Båmstedt, U. (2006). Turnover of dead jellyfish: stimulation and retardation of microbial activity. Marine Ecology Progress Series, 325, 43–58. https://doi.org/10.3354/meps325043

Tronolone, V. B., Morandini, A. C. & Migotto, A. E. (2002). On the occurrence of scyphozoan ephyrae (Cnidaria, Scyphozoa, Semaeostomeae, and Rhizostomeae) in the southeastern Brazilian coast. Biota Neotropica, 2(2), 1–18. https://doi.org/10.1590/S1676-06032002000200008

Wood, S. (2006). Generalized Additive Models: An Introduction with R. CRC/Chapman & Hall. https://doi.org/10.1201/9781420010404

Wood, S. (2020). Package ‘mgcv’ Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, version 1.8.33. https://cran.r-project.org/web/packages/mgcv/mgcv.pdf

Xu, Y., Ishizaka, J., Yamaguchi, H., Siswanto, E. & Wang, S. (2013). Relationships of interannual variability in SST and phytoplankton blooms with giant jellyfish (Nemopilema nomurai) outbreaks in the Yellow Sea and East China Sea. Journal of Oceanography, 69, 511–526. https://doi.org/10.1007/s10872-013-0189-1

Zuber, V., Strimmer, K. & Strimmer, M. K. (2017). Package ‘care’. High-Dimensional Regression and CAR Score Variable Selection. https://mran.microsoft.com/snapshot/2014-09-26/web/packages/care/care.pdf

Published

2024-07-29

How to Cite

Quiñones, J., Lorenzo, A., & Norza Sior, A. A. (2024). Biological parameters of the large jellyfish Chrysaora plocamia in central Peruvian coast, a ten-year study. Boletin Instituto Del Mar Del Perú, 39(2), e409. https://doi.org/10.53554/boletin.v39i2.409

Most read articles by the same author(s)