Diagnóstico funcional de cuerpos lóticos y lénticos usando el Índice de Valoración Trófica-Ecológica (IVT-Ecológica): caso río Orinoco y laguna de Castillero, Venezuela
DOI:
https://doi.org/10.53554/boletin.v40i2.444Palabras clave:
Agua y sedimento, eutrofización, fósforo, índice ecológico, sistemas acuáticos tropicalesResumen
Los ecosistemas acuáticos continentales, lénticos y lóticos, son componentes esenciales de la biosfera porque generan bienes y servicios ecosistémicos que respaldan la vida humana y la biodiversidad. Los índices de calidad de agua y de estado trófico se han vuelto instrumentos fundamentales para diagnosticar y transmitir la situación ecológica en estos ecosistemas. El objetivo de este trabajo fue evaluar la funcionalidad del río Orinoco y la laguna de Castillero, identificando los procesos internos de liberación y retención de fósforo en los sedimentos usando el índice valoración trófica-ecológica (IVT-Ecológica). Este índice se creó considerando la interrelación entre elementos fisicoquímicos y geoquímicos (pelágicos y bentónicos), incluyendo algunas variables que promueven la liberación del fósforo, así como las que actúan como estabilizadores o amortiguadores del sistema (PBD, P-O, P-Ad+Fe; PO₄³⁻, NOₓ, O2, SS; pH, CaCO₃). Los resultados fueron comparados mediante análisis multivariado (MDS, ANOSIM y SIMPER). Para el río Orinoco se observó un valor bajo de IVT-Ecológica (0,04 ± 0,02), lo que permite clasificarlo como un sistema estable y exportador; mientras que la laguna, con un valor de 3,77 ± 1,30, actúa como un sistema de retención y reciclaje interno de fósforo, como resultado de la acumulación de P-lábil. No se detectaron impactos antropogénicos. Estos resultados confirman que el IVT-Ecológica es un indicador fiable para identificar vulnerabilidades tróficas con una buena sensibilidad; por lo tanto, se aconseja usarlo en programas de monitoreo, identificación de procesos de eutrofización, estudios comparativos y en la administración de ecosistemas tropicales.
Descargas
Alternative Metrics
Métricas
Citas
Aminot, A. & Chaussepied, M. (1983). Dosage del’ Oxygéne dissous. En Manuel des Analyses Chimiques en milieu Marin (Cap. XI, pp. 125-134). Centre National Pour L’Explotation des Océans (CNEXO).
Anderson, L. D. & Delaney, M. L. (2000). Sequential extraction and analysis of phosphorus in marine sediments: Streamlining of the SEDEX procedure. Limnology and Oceanography, 45(2), 509–515. https://doi.org/10.4319/lo.2000.45.2.0509
Barik, S. K., Bramha, S., Bastia, T. K., Behera, D., Kumar, M., Mohanty, P. K. & Rath, P. (2019). Characteristics of geochemical fractions of phosphorus and its bioavailability in sediments of a largest brackish water lake, South Asia. Ecohydrology & Hydrobiology, 19, 370–382. https://doi.org/10.1016/j.ecohyd.2019.02.002
Bendschneider, K. & Robinson, R. J. (1952). A new spectrophometric determination of nitrite in sea water. Journal of Marine Research, 11(1), 87-96. https://elischolar.library.yale.edu/journal_of_marine_research/761
Bustamante, M. M. C., Martinelli, L. A., Pérez, T., Rasse, R., Ometto, J. P. H., Siqueira Pacheco, F., Machado Lins, S. R. & Marquina, S. (2015). Nitrogen management challenges in major watersheds of South America. Environmental Research Letters, 10, 065007. https://doi.org/10.1088/1748-9326/10/6/065007
Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369. https://doi.org/10.4319/lo.1977.22.2.0361
Chen, Y., Hu, C, Yang, G. P., Gao, X-C. & Zhou, L-M. (2021). Variation and reactivity of organic matter in the surface sediments of the Changjiang Estuary and its adjacent East China Sea. Journal of Geophysical Research: Biogeosciences, 126, e2020JG005765. https://doi.org/10.1029/2020JG005765
Clarke, K. R. & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation (2a ed.). PRIMER-E Ltd.
Corman, J. R. (2025). Calcium carbonate and phosphorus interactions in inland waters. Limnology and Oceanography Letters, 10, 158-178. https://doi.org/10.1002/lol2.10452
Cressa, C., Vásquez, E., Zoppi, E., Rincón, J. E. &López, C. (1993). Aspectos generales de la Limnología en Venezuela. Interciencia, 18(5), 237-248. https://acortar.link/rSuf0E
Dan, S. F., Liu, S-M. & Yang, B. (2020). Geochemical fractionation, potential bioavailability and ecological risk of phosphorus in surface sediments of the Cross River estuary system and adjacent shelf, South East Nigeria (West Africa). Journal of Marine Systems, 201, 103244. https://doi.org/10.1016/j.jmarsys.2019.103244
da Silva, T. T., Saraiva, M. A. & Becker, H. (2024). Proposal for a trophic status index for Brazilian semi-arid reservoirs. Revista Caatinga, 37, e12405. https://doi.org/10.1590/1983-21252024v3712405rc
de Deus, A. C. & Matos, D. M. (2024). Monitoring subtropical aquatic ecosystems: evaluating the use of Trophic State Indices (TSI) and Aquatic Life Protection (API) as baseline indices by monitoring an urban reservoir in southeastern Brazil. Brazilian Journal of Biology, 84, e283148. https://doi.org/10.1590/1519-6984.283148
Eaton, A. D., Clesceri, L. S. & Greenberg, A. E. (Eds.). (1995). Standard Methods for the Examination of Water and Wastewater (19a ed.). American Public Health Association (APHA).
Escober, E. J. & Pythias Espino, M. (2023). A new trophic state index for assessing eutrophication of Laguna de Bay, Philippines. Environmental Advances, 13, 100410. https://doi.org/10.1016/j.envadv.2023.100410
Fabre, C., Wei, X., Sauvage, S., Quynh Le, T. P., Ouillon, S., Orange, D., Herrmann, M. & Sánchez-Pérez, J-M. (2023). Assessing fluvial organic carbon flux and its response to short climate variability and damming on a large-scale tropical Asian river basin. Science of The Total Environment, 903, 166589. https://doi.org/10.1016/j.scitotenv.2023.166589
Fan, X., Xing, X. & Ding, S. (2021). Enhancing the retention of phosphorus through bacterial oxidation of iron or sulfide in the eutrophic sediments of Lake Taihu. Science of the Total Environment, 791, 148039. https://doi.org/10.1016/j.scitotenv.2021.148039
Folk, R. L. (1974). Petrology of Sedimentary Rocks. Hemphill Publishing Company. González, H. & Ramírez, M. (1995). The effect of nickel mining and metallurgical activities on the distribution of heavy metals in Levisa Bay, Cuba. Journal of Geochemical Exploration, 52(1–2), 183–192. https://doi.org/10.1016/0375-6742(94)00054-F
Guildford, S. J. & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography, 45(6), 1213–1223. https://doi.org/10.4319/lo.2000.45.6.1213
Hupfer, M. & Lewandowski, J. (2008). Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. International Review of Hydrobiology, 93(4–5), 415–432. https://doi.org/10.1002/iroh.200711054
Jolliffe, I. T. & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20150202. https://doi.org/10.1098/rsta.2015.0202
Koroleff, F. (1976). Determination of nutrients. En K. Grasshoff (Ed.), Methods of Sea-water Analysis. Verlag Chemie.
Kozyrev, R., Umezawa, Y. & Yoh, M. (2023), Total phosphorus and phosphorus forms change in sediments along the Tone River. Frontiers in Earth Science, 11, 1060312. https://doi.org/10.3389/feart.2023.1060312
Kraal, P., Burton, E. D., Rose, A. L., Kocar, B. D., Lockhart, R. S., Grice, K., Bush, R. T., Tan, E. & Webb, S. M. (2015). Sedimentary iron–phosphorus cycling under contrasting redox conditions in a eutrophic estuary. Chemical Geology, 392, 19-31. https://doi.org/10.1016/j.chemgeo.2014.11.006
Lewis, A. S., Kim, B. S., Edwards, H. L., Wander, H. L., Garfield, C. M., Murphy, H. E., Poulin, N. D., Princiotta, S. D., Rose, K. C., Taylor, A. E., Weathers, K. C., Wigdahl-Perry, C. R., Yokota, K., Richardson, D. C. & Bruesewitz, D. A. (2020). Prevalence of phytoplankton limitation by both nitrogen and phosphorus related to nutrient stoichiometry, land use, and primary producer biomass across the northeastern United States. Inland Waters, 10, 42–50. https://doi.org/10.1080/20442041.2019.1664233
Lewis, B. L. & Landing, W. M. (1992). The investigation of dissolved and suspended particulate trace metal fractionation in the Black Sea. Marine Chemistry, 40(1–2), 105–141. https://doi.org/10.1016/0304-4203(92)90050-K
Lewis, W. M., Saunders, J. F. & Dufford, R. (1990a). Suspended organisms and biological carbon flux along the lower Orinoco river. En F. H. Weibezahn, H. Alvarez & W. M. Lewis Jr. (Eds.), El Río Orinoco como Ecosistema (pp. 269-300). Editorial Galac SA. https://acortar.link/h7WKbb
Lewis, W. M., Weibezahn, F. M., Saunders, J. F. & Hamilton, S. K. (1990b). The Orinoco River as an ecological system. Interciencia, 75(6), 346-357. https://acortar.link/iLkI9L
Li, S., Xu, S., Song, K., Kutser, T., Wen, Z., Liu, G., Shang, Y., Lyu, L., Tao, H., Wang, X., Zhang, L. & Chen, F. (2023a). Remote quantification of the trophic status of Chinese lakes. Hydrology and Earth System Sciences, 27, 3581–3599. https://doi.org/10.5194/hess-27-3581-2023
Li, H., Zhou, J. & Zhang, M. (2023b). Regime of fluvial phosphorus constituted by sediment. Frontiers in Environmental. Science, 11, 1093413. https://doi.org/10.3389/fenvs.2023.1093413
Liang, J., Yan, M., Zhu, Z., Lu, L., Ding, J., Zhou, Q., Gao, X., Tang, N., Li, S., Li, X. & Zeng, G. (2024). The role of microorganisms in phosphorus cycling at riverlake confluences: Insights from a study on microbial community dynamics. Water research, 268, 122556. https://doi.org/10.1016/j.watres.2024.122556
Liu, D., Li, X., Qiao, Q., Bai, L., Lu, Z., Zhang, Y. & Lu, C. (2024). Assessment of phosphorus pollution and phosphorus release mechanisms of sediment in the Tuojiang River, Southwest China. Journal of Hydrology: Regional Studies, 51, 101635. https://doi.org/10.1016/j.ejrh.2023.101635
Liu, J., Yu, Y., Liu, M. & Liu, X. (2025). A review of phosphorus in river floodplains: Source or sink? Hydroecology and Engineering, 2, 10001. https://doi.org/10.70322/hee.2025.10001
Manning, D. W., Rosemond, A. D., Benstead, J. P., Bumpers, P. M. & Kominoski, J. S. (2020). Transport of N and P in U.S. streams and rivers differs with land use and between dissolved and particulate forms. Ecological Applications, 30(6), e02130. https://doi.org/10.1002/eap.2130
Márquez, A., Senior, W., Martínez, G., Castañeda, J. & González, Á. (2008). Concentraciones de metales en sedimentos y tejidos musculares de algunos peces de la Laguna de Castillero, Venezuela. Revista Científica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia, 18(2), 121–133. https://produccioncientificaluz.org/index.php/cientifica/article/view/15348
Márquez, A. & Lemus, A. (2020). Riesgos ambientales por metales pesados en los sedimentos del río Orinoco. En D. Rodríguez Olarte (Ed.), Ríos en Riesgo de Venezuela (Colección Recursos Hidrobiológicos de Venezuela, Vol. III., pp. 57-76). Universidad Centroccidental Lisandro Alvarado (UCLA). https://acortar.link/kOTcFk
Meyers, P. A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114, 289–302. https://doi.org/10.1016/0009-2541(94)90059-0
Milliman, J. D. & Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. The Journal of Geology, 91(1), 1–21. https://doi.org/10.1086/628741
Mogane, L. K., Masebe, T., Msagati, T. A. & Ncube, E. (2023). A comprehensive review of water quality indices for lotic and lentic ecosystems. Environmental Monitoring and Assessment, 195, 926. https://doi.org/10.1007/s10661-023-11512-2
Mora, A., Laraque., A. & López, J. L. (2017). El Bajo Orinoco: aspectos hidrosedimentológicos, geoquímicos e influencia antrópica. En D. Rodríguez Olarte (Ed.), Ríos en riesgo de Venezuela (Vol. 1, pp. 109-126). Universidad Centroccidental Lisandro Alvarado (UCLA). https://acortar.link/dVKJTM
Mudroch, A. & Azcue, J. M. (1995). Manual of aquatic sediment sampling. Lewis Publishers.
Mullin, J. & Riley, J. (1955). The spectrophotometric determination of silicate-silicon in natural waters with special reference to sea water. Analytica Chimica Acta, 12, 162-170.
Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
Neill, C., Deegan., L. A., Thomas, S. M. & Cerri, C. C. (2001). Deforestation for pasture alters nitrogen and phosphorus in small amazonian streams. Ecological Applications, 11(6), 1817–1828. https://acortar.link/D1B1q7
Neumann, K., John, C., Atger, T., Punu, T., Hollarsmith, J. A. & Burkepile, D. E. (2025). Land use shapes riverine nutrient and sediment concentrations on Moorea, French Polynesia. Scientific Reports, 15, 27948. https://doi.org/10.1038/s41598-025-13425-1
OpenAI. (2025, 15 de junio). ChatGPT (Versión 4.0) [Modelo grande de lenguaje]. https://Chat.openai.com
Páez-Osuna, F., Fong-Lee, M. L. & Fernández-Pérez, H. (1984). Comparación de tres técnicas para analizar materia orgánica en sedimentos. Anales del Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 11, 257–264.
Peng, Y., Tian, C., Chi, M. & Yang, H. (2019). Distribution of phosphorus species and their release risks in the surface sediments from different reaches along Yellow River. Environmental Science and Pollution Research, 26, 28202–28209. https://doi.org/10.1007/s11356-019-06026-9
Primo, E. & Carrasco, J. M. (1973). Química agrícola I. Suelos y fertilizantes. Alhambra S.A
Ramaswamy, V., Gaye, B., Shirodkar, P. V., Rao, P. S., Chivas, A. R., Wheeler, D. & Thwin, S. (2008). Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Marine Chemistry, 111, 137–150. https://doi.org/10.1016/j.marchem.2008.04.006
Reddy, K. R. & Delaune, R. D. (2008). Biogeochemistry of wetlands: Science and applications. CRC Press. https://doi.org/10.1201/9780203491454
Reddy, K. R., Kadlec, R. H., Flaig, E. & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: A review. Critical Reviews in Environmental Science and Technology, 29(1), 83-146. https://doi.org/10.1080/10643389991259182
Redfield, A. C., Ketchum, B. H. & Richards, F. A. (1963). The Influence of Organisms on the Composition of Sea-water. En M. N. Hill (Ed.), The sea (Vol. 2, pp. 26–77.). Harvard University Press.
Roa, P. & Berthois, L. (1975). Manual de sedimentología: métodos para el estudio de los sedimentos y no consolidados. Universidad Central de Venezuela.
Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37(7), 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
Savenko, V. S. & Savenko, A. V. (2022). The Main Features of Phosphorus Transport in World Rivers. Water, 14, 16. https://doi.org/10.3390/w14010016
Shou, C-Y., Yue, F-J., Zhou, B., Fu, X., Ma, Z-N., Gong, Y-Q. & Chen, S-N. (2024). Chronic increasing nitrogen and endogenous phosphorus release from sediment threaten to the water quality in a semi-humid region reservoir. Science of the Total Environment, 931, 172924. https://doi.org/10.1016/j.scitotenv.2024.172924
Singh, P. & Yadav, B. (2025). Seasonal eutrophication in lentic small waterbodies: Understanding nutrientschlorophyll-a relationships and implications. Journal of Hazardous Materials Advances, 17, 100563. https://doi.org/10.1016/j.hazadv.2024.100563
Søndergaard, M., Jensen, J. P. & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiology, 506, 135–145. https://doi.org/10.1023/B:HYDR.0000008611.12704.dd
Strickland, J. D. H. & Parsons, T. R. (1972). A practical Handbook of seawaters Analysis (Bulletin 167, 2a ed.). Fisheries Research Board of Canada. http://dx.doi.org/10.25607/OBP-1791
Suman, A., Anuja P. K. & Adarsh, S. (2023). Development and prediction of a robust multivariate trophic state index for the classification of lentic water bodies. Results in Engineering, 20, 101586. https://doi.org/10.1016/j.rineng.2023.101586
Sutula, M., Bianchi, T. S. & Mckee, B. A. (2004). Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico. Limnology and Oceanography, 49(6), 2223–2235. https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lo.2004.49.6.2223
Tammeorg, O., Núremberg, G., Horppila, J., Haldna, M. & Niemistö, J. (2020). Redox-related release of phosphorus from sediments in large and shallow Lake Peipsi: Evidence from sediment studies and long-term monitoring data. Journal of Great Lakes Research, 46, 1595-1603. https://doi.org/10.1016/j.jglr.2020.08.023
Tian, J., Dong, G., Karthikeyan, R., Li, L. & Harmel, R. D. (2017). Phosphorus dynamics in long-term flooded, drained, and reflooded soils. Water, 9, 531. https://doi.org/10.3390/w9070531
Toledo Júnior, A. P., Talarico, M., Chinez, S. J. & Agudo, E. G. (1983). The application of simplified models for the evaluation of the process of eutrophication in tropical lakes and reservoirs. En Congresso Brasileiro de Engenharia Sanitária e Ambiental.
Tonello, M. S., Hebner, T. S., Sterner, R. W., Brovold, S., Tiecher, T., Bortoluzzi, E. C. & Merten, G. H. (2020). Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability. Journal of Soils and Sediments, 20, 1060-1073. https://doi.org/10.1007/s11368-019-02420-5
Treguer, P. & Le Corre, P. (1975). Manual d’analyses des sels nutritifs dans l’eau demer. Utilization de l’Auto-Analyzer II. Techicon R (2a ed.). LOC-UBO.
Tu, C., Jin, Z., Che, F., Cao, X., Song, X., Lu, C. & Huang, W. (2022). Characterization of phosphorus sorption and microbial community in lake sediments during overwinter and recruitment periods of cyanobacteria. Chemosphere, 307, 135777. https://doi.org/10.1016/j.chemosphere.2022.135777
Valderrama, J. C. (1981). The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 10, 109-122. https://doi.org/10.1016/0304-4203(81)90027-X
Vásquez, E. & Wilbert, W. (1992). The Orinoco: Physical, biological and cultural diversity of major tropical alluvial river. En P. Calow & G. E. Petts (Eds.), The Rivers Handbook (Vol. 1, pp. 448-471). Blackwell Scientific Publications.
Vogel, A. I. (1989). Textbook of Practical Organic Chemistry (5a ed.). Longman Scientific & Technical. https://acortar.link/5FYIyY
Walch, H., von der Kammer, F. & Hofmann, T. (2022). Freshwater suspended particulate matter - Key components and processes in floc formation and dynamics. Water Research, 220, 118655. https://doi.org/10.1016/j.watres.2022.118655
Walkley, A. & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
Wan, J., Yuan., X., Han, L., Ye, H. & Yang, X. (2020). Characteristics and distribution of organic phosphorus fractions in the surface sediments of the inflow rivers around Hongze Lake, China. International Journal of Environmental Research and Public Health, 17, 648. https://doi.org/10.3390/ijerph17020648
Wang, L., Li, Q., Zou, H. & Zhou, Y. (2013). Phosphorus speciation in wetland sediments of Zhujiang (Pearl) River Estuary, China. Chinese Geographical Science, 23(5), 574–583. https://doi.org/10.1007/s11769-013-0627-4
Wang, Z., Huang, S. & Li, D. (2019). Decomposition of cyanobacterial bloom contributes to the formation and distribution of iron-bound phosphorus (Fe-P): Insight for cycling mechanism of internal phosphorus loading. Science of the Total Environment, 652, 696-708. https://doi.org/10.1016/j.scitotenv.2018.10.260
Wei, M-Z., Liu, J-W., Yang, Q-Z., Xue, A., Wu, H., Ni, J-R., Winter, L. R., Elimelech, M. & Zhao, H-Z. (2022). Denitrification mechanism in oxygen-rich aquatic environments through long-distance electron transfer. Clean Water, 5, 61. https://doi.org/10.1038/s41545-022-00205-x
Weibezahn, F. H., Alvarez, H. & Lewis, W. M. (Eds.). (1990). El Río Orinoco como Ecosistema. Editorial Galac SA. https://acortar.link/h7WKbb
Wetzel, R. G. (2001). Limnology: Lake and river ecosystems (3a ed.). Academic Press. https://acortar.link/AOjeNt
Wu, X., Wang, Y., Jiao, L., He, J., Zhou, H. & Hao, Z. (2025). Influencing factors of phosphorus mobility and retention in the sediment of three typical plateau lakes. Toxics, 13, 120. https://doi.org/10.3390/toxics13020120
Xiao, J., Chen, X., Zhou, L., Zhang, H., Hang, X. & Chen, Y. (2025). Nutrient distribution characteristics and eutrophication evaluation of coastal water near the Yellow river estuary, China. Water, 17, 2469. https://doi.org/10.3390/w17162469
Xu, X., Weng, N., Zhang, H., Van De Velde, S., Hermans, M., Wu, F. & Huo, S. (2023). Cable bacteria regulate sedimentary phosphorus release in freshwater sediments. Water Research, 242, 120218. https://doi.org/10.1016/j.watres.2023.120218
Yang, D., Wang, D., Chen, S., Ding, Y., Gao, Y., Tian, H., Cai, R., Yu, L., Deng, H. & Chen, Z. (2021). Denitrification in urban river sediment and the contribution to total nitrogen reduction. Ecological Indicators, 120, 106960. https://doi.org/10.1016/j.ecolind.2020.106960
Yu, W., Yang H., Chen, J., Liao, P., Chen, Q., Yang. Y. & Liu, Y. (2022). Organic phosphorus mineralization dominates the release of internal phosphorus in a macrophyte-dominated eutrophication lake. Frontiers in Environmental Sciences, 9, 812834. https://doi.org/10.3389/fenvs.2021.812834
Zhang, F., Xue, B., Cai, Y., Xu, H. & Zou, W. (2023). Utility of trophic state index in lakes and reservoirs in the Chinese Eastern Plains ecoregion: The key role of water depth. Ecological Indicators, 148, 110029. https://doi.org/10.1016/j.ecolind.2023.110029
Zhang, G. W., Jin, X., Zhu, X. & Shan, B. (2016). Characteristics and distribution of phosphorus in surface sediments of limnetic ecosystem in Eastern China. PLoS ONE, 11(6), e0156488. https://doi.org/10.1371/journal.pone.0156488
Zhang, Y., Song, C., Ji, L., Liu, Y., Xiao, J., Cao, X. & Zhou, Y. (2018). Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes. Science of the Total Environment, 627, 1294-1302. https://doi.org/10.1016/j.scitotenv.2018.01.327
Zhang, Y., Zhang, D., Li, Y., Han, X., Wang, X., Zhang, J., Gu, K., Sun, S., Liu, Q. & Lv, J. (2025). Spatiotemporal dynamics of nitrogen and phosphorus in the water and sediment from the source reservoir of the Mid-Route of China’s South-to-North Water Diversion Project. Water, 17, 1824. https://doi.org/10.3390/w17121824
Zheng, Z., Wang, X., Jin, J., Hao, J., Nie, Y., Chen, X., Mou, J., Emslie, S. D. & Liu, X. (2022). Fraction distribution and dynamic cycling of phosphorus in lacustrine sediment at Inexpressible Island, Antarctica. Environment international, 164, 107228. https://doi.org/10.1016/j.envint.2022.107228
Zhuo, T., He, L., Chai, B., Zhou, S., Wan, Q., Lei, X., Zhou, Z. & Chen, B. (2023). Micro-pressure promotes endogenous phosphorus release in a deep reservoir by favouring microbial phosphate mineralization and solubilisation coupled with sulphate reduction. Water Research, 245, 120647. https://doi.org/10.1016/j.watres.2023.120647
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Boletín Instituto del Mar del Perú

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.