Functional diagnosis of lotic and lentic water bodies using the Trophic-Ecological Valuation Index (IVT-Ecological): case study of the Orinoco river and Castillero lagoon, Venezuela

Authors

DOI:

https://doi.org/10.53554/boletin.v40i2.444

Keywords:

Water and sediment, eutrophication, phosphorus, ecological index, tropical aquatic systems

Abstract

Both lentic and lotic continental aquatic ecosystems are essential components of the biosphere because they generate the goods and services that support human life and biodiversity. Water quality and trophic status indices have become fundamental tools for assessing and communicating the ecological health of these ecosystems. This study aimed to evaluate functionality and identify internal phosphorus release and retention processes in the sediments of the Orinoco River and Castillero Lagoon using the Trophic Vulnerability Index (IVT-Ecological). This index considers the interrelationship between physicochemical and geochemical elements (pelagic and benthic), including variables that promote phosphorus release, as well as stabilisers and buffers for the system (BD-P, P-O, P-Ad+Fe, PO₄³⁻, NOₓ, O2, SS, pH and CaCO₃). The results were compared with multivariate analyses (MDS, ANOSIM and SIMPER). The Orinoco River showed a low IVT-Ecological value of 0.038, classifying it as a stable, export-dominated system. In contrast, the lagoon functioned as a system with retention and internal phosphorus recycling due to the accumulation of labile phosphorus, with a value of 3.77. No anthropogenic impacts were detected. These results confirm that the IVT-Ecological index is a reliable indicator for identifying trophic vulnerabilities with high sensitivity. Therefore, it is recommended for use in monitoring programs, eutrophication studies, comparative research and the management of tropical aquatic ecosystems.

Downloads

Download data is not yet available.

Alternative Metrics

Metrics

Metrics Loading ...

References

Aminot, A. & Chaussepied, M. (1983). Dosage del’ Oxygéne dissous. En Manuel des Analyses Chimiques en milieu Marin (Cap. XI, pp. 125-134). Centre National Pour L’Explotation des Océans (CNEXO).

Anderson, L. D. & Delaney, M. L. (2000). Sequential extraction and analysis of phosphorus in marine sediments: Streamlining of the SEDEX procedure. Limnology and Oceanography, 45(2), 509–515. https://doi.org/10.4319/lo.2000.45.2.0509

Barik, S. K., Bramha, S., Bastia, T. K., Behera, D., Kumar, M., Mohanty, P. K. & Rath, P. (2019). Characteristics of geochemical fractions of phosphorus and its bioavailability in sediments of a largest brackish water lake, South Asia. Ecohydrology & Hydrobiology, 19, 370–382. https://doi.org/10.1016/j.ecohyd.2019.02.002

Bendschneider, K. & Robinson, R. J. (1952). A new spectrophometric determination of nitrite in sea water. Journal of Marine Research, 11(1), 87-96. https://elischolar.library.yale.edu/journal_of_marine_research/761

Bustamante, M. M. C., Martinelli, L. A., Pérez, T., Rasse, R., Ometto, J. P. H., Siqueira Pacheco, F., Machado Lins, S. R. & Marquina, S. (2015). Nitrogen management challenges in major watersheds of South America. Environmental Research Letters, 10, 065007. https://doi.org/10.1088/1748-9326/10/6/065007

Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369. https://doi.org/10.4319/lo.1977.22.2.0361

Chen, Y., Hu, C, Yang, G. P., Gao, X-C. & Zhou, L-M. (2021). Variation and reactivity of organic matter in the surface sediments of the Changjiang Estuary and its adjacent East China Sea. Journal of Geophysical Research: Biogeosciences, 126, e2020JG005765. https://doi.org/10.1029/2020JG005765

Clarke, K. R. & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation (2a ed.). PRIMER-E Ltd.

Corman, J. R. (2025). Calcium carbonate and phosphorus interactions in inland waters. Limnology and Oceanography Letters, 10, 158-178. https://doi.org/10.1002/lol2.10452

Cressa, C., Vásquez, E., Zoppi, E., Rincón, J. E. &López, C. (1993). Aspectos generales de la Limnología en Venezuela. Interciencia, 18(5), 237-248. https://acortar.link/rSuf0E

Dan, S. F., Liu, S-M. & Yang, B. (2020). Geochemical fractionation, potential bioavailability and ecological risk of phosphorus in surface sediments of the Cross River estuary system and adjacent shelf, South East Nigeria (West Africa). Journal of Marine Systems, 201, 103244. https://doi.org/10.1016/j.jmarsys.2019.103244

da Silva, T. T., Saraiva, M. A. & Becker, H. (2024). Proposal for a trophic status index for Brazilian semi-arid reservoirs. Revista Caatinga, 37, e12405. https://doi.org/10.1590/1983-21252024v3712405rc

de Deus, A. C. & Matos, D. M. (2024). Monitoring subtropical aquatic ecosystems: evaluating the use of Trophic State Indices (TSI) and Aquatic Life Protection (API) as baseline indices by monitoring an urban reservoir in southeastern Brazil. Brazilian Journal of Biology, 84, e283148. https://doi.org/10.1590/1519-6984.283148

Eaton, A. D., Clesceri, L. S. & Greenberg, A. E. (Eds.). (1995). Standard Methods for the Examination of Water and Wastewater (19a ed.). American Public Health Association (APHA).

Escober, E. J. & Pythias Espino, M. (2023). A new trophic state index for assessing eutrophication of Laguna de Bay, Philippines. Environmental Advances, 13, 100410. https://doi.org/10.1016/j.envadv.2023.100410

Fabre, C., Wei, X., Sauvage, S., Quynh Le, T. P., Ouillon, S., Orange, D., Herrmann, M. & Sánchez-Pérez, J-M. (2023). Assessing fluvial organic carbon flux and its response to short climate variability and damming on a large-scale tropical Asian river basin. Science of The Total Environment, 903, 166589. https://doi.org/10.1016/j.scitotenv.2023.166589

Fan, X., Xing, X. & Ding, S. (2021). Enhancing the retention of phosphorus through bacterial oxidation of iron or sulfide in the eutrophic sediments of Lake Taihu. Science of the Total Environment, 791, 148039. https://doi.org/10.1016/j.scitotenv.2021.148039

Folk, R. L. (1974). Petrology of Sedimentary Rocks. Hemphill Publishing Company. González, H. & Ramírez, M. (1995). The effect of nickel mining and metallurgical activities on the distribution of heavy metals in Levisa Bay, Cuba. Journal of Geochemical Exploration, 52(1–2), 183–192. https://doi.org/10.1016/0375-6742(94)00054-F

Guildford, S. J. & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography, 45(6), 1213–1223. https://doi.org/10.4319/lo.2000.45.6.1213

Hupfer, M. & Lewandowski, J. (2008). Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. International Review of Hydrobiology, 93(4–5), 415–432. https://doi.org/10.1002/iroh.200711054

Jolliffe, I. T. & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20150202. https://doi.org/10.1098/rsta.2015.0202

Koroleff, F. (1976). Determination of nutrients. En K. Grasshoff (Ed.), Methods of Sea-water Analysis. Verlag Chemie.

Kozyrev, R., Umezawa, Y. & Yoh, M. (2023), Total phosphorus and phosphorus forms change in sediments along the Tone River. Frontiers in Earth Science, 11, 1060312. https://doi.org/10.3389/feart.2023.1060312

Kraal, P., Burton, E. D., Rose, A. L., Kocar, B. D., Lockhart, R. S., Grice, K., Bush, R. T., Tan, E. & Webb, S. M. (2015). Sedimentary iron–phosphorus cycling under contrasting redox conditions in a eutrophic estuary. Chemical Geology, 392, 19-31. https://doi.org/10.1016/j.chemgeo.2014.11.006

Lewis, A. S., Kim, B. S., Edwards, H. L., Wander, H. L., Garfield, C. M., Murphy, H. E., Poulin, N. D., Princiotta, S. D., Rose, K. C., Taylor, A. E., Weathers, K. C., Wigdahl-Perry, C. R., Yokota, K., Richardson, D. C. & Bruesewitz, D. A. (2020). Prevalence of phytoplankton limitation by both nitrogen and phosphorus related to nutrient stoichiometry, land use, and primary producer biomass across the northeastern United States. Inland Waters, 10, 42–50. https://doi.org/10.1080/20442041.2019.1664233

Lewis, B. L. & Landing, W. M. (1992). The investigation of dissolved and suspended particulate trace metal fractionation in the Black Sea. Marine Chemistry, 40(1–2), 105–141. https://doi.org/10.1016/0304-4203(92)90050-K

Lewis, W. M., Saunders, J. F. & Dufford, R. (1990a). Suspended organisms and biological carbon flux along the lower Orinoco river. En F. H. Weibezahn, H. Alvarez & W. M. Lewis Jr. (Eds.), El Río Orinoco como Ecosistema (pp. 269-300). Editorial Galac SA. https://acortar.link/h7WKbb

Lewis, W. M., Weibezahn, F. M., Saunders, J. F. & Hamilton, S. K. (1990b). The Orinoco River as an ecological system. Interciencia, 75(6), 346-357. https://acortar.link/iLkI9L

Li, S., Xu, S., Song, K., Kutser, T., Wen, Z., Liu, G., Shang, Y., Lyu, L., Tao, H., Wang, X., Zhang, L. & Chen, F. (2023a). Remote quantification of the trophic status of Chinese lakes. Hydrology and Earth System Sciences, 27, 3581–3599. https://doi.org/10.5194/hess-27-3581-2023

Li, H., Zhou, J. & Zhang, M. (2023b). Regime of fluvial phosphorus constituted by sediment. Frontiers in Environmental. Science, 11, 1093413. https://doi.org/10.3389/fenvs.2023.1093413

Liang, J., Yan, M., Zhu, Z., Lu, L., Ding, J., Zhou, Q., Gao, X., Tang, N., Li, S., Li, X. & Zeng, G. (2024). The role of microorganisms in phosphorus cycling at riverlake confluences: Insights from a study on microbial community dynamics. Water research, 268, 122556. https://doi.org/10.1016/j.watres.2024.122556

Liu, D., Li, X., Qiao, Q., Bai, L., Lu, Z., Zhang, Y. & Lu, C. (2024). Assessment of phosphorus pollution and phosphorus release mechanisms of sediment in the Tuojiang River, Southwest China. Journal of Hydrology: Regional Studies, 51, 101635. https://doi.org/10.1016/j.ejrh.2023.101635

Liu, J., Yu, Y., Liu, M. & Liu, X. (2025). A review of phosphorus in river floodplains: Source or sink? Hydroecology and Engineering, 2, 10001. https://doi.org/10.70322/hee.2025.10001

Manning, D. W., Rosemond, A. D., Benstead, J. P., Bumpers, P. M. & Kominoski, J. S. (2020). Transport of N and P in U.S. streams and rivers differs with land use and between dissolved and particulate forms. Ecological Applications, 30(6), e02130. https://doi.org/10.1002/eap.2130

Márquez, A., Senior, W., Martínez, G., Castañeda, J. & González, Á. (2008). Concentraciones de metales en sedimentos y tejidos musculares de algunos peces de la Laguna de Castillero, Venezuela. Revista Científica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia, 18(2), 121–133. https://produccioncientificaluz.org/index.php/cientifica/article/view/15348

Márquez, A. & Lemus, A. (2020). Riesgos ambientales por metales pesados en los sedimentos del río Orinoco. En D. Rodríguez Olarte (Ed.), Ríos en Riesgo de Venezuela (Colección Recursos Hidrobiológicos de Venezuela, Vol. III., pp. 57-76). Universidad Centroccidental Lisandro Alvarado (UCLA). https://acortar.link/kOTcFk

Meyers, P. A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114, 289–302. https://doi.org/10.1016/0009-2541(94)90059-0

Milliman, J. D. & Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. The Journal of Geology, 91(1), 1–21. https://doi.org/10.1086/628741

Mogane, L. K., Masebe, T., Msagati, T. A. & Ncube, E. (2023). A comprehensive review of water quality indices for lotic and lentic ecosystems. Environmental Monitoring and Assessment, 195, 926. https://doi.org/10.1007/s10661-023-11512-2

Mora, A., Laraque., A. & López, J. L. (2017). El Bajo Orinoco: aspectos hidrosedimentológicos, geoquímicos e influencia antrópica. En D. Rodríguez Olarte (Ed.), Ríos en riesgo de Venezuela (Vol. 1, pp. 109-126). Universidad Centroccidental Lisandro Alvarado (UCLA). https://acortar.link/dVKJTM

Mudroch, A. & Azcue, J. M. (1995). Manual of aquatic sediment sampling. Lewis Publishers.

Mullin, J. & Riley, J. (1955). The spectrophotometric determination of silicate-silicon in natural waters with special reference to sea water. Analytica Chimica Acta, 12, 162-170.

Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5

Neill, C., Deegan., L. A., Thomas, S. M. & Cerri, C. C. (2001). Deforestation for pasture alters nitrogen and phosphorus in small amazonian streams. Ecological Applications, 11(6), 1817–1828. https://acortar.link/D1B1q7

Neumann, K., John, C., Atger, T., Punu, T., Hollarsmith, J. A. & Burkepile, D. E. (2025). Land use shapes riverine nutrient and sediment concentrations on Moorea, French Polynesia. Scientific Reports, 15, 27948. https://doi.org/10.1038/s41598-025-13425-1

OpenAI. (2025, 15 de junio). ChatGPT (Versión 4.0) [Modelo grande de lenguaje]. https://Chat.openai.com

Páez-Osuna, F., Fong-Lee, M. L. & Fernández-Pérez, H. (1984). Comparación de tres técnicas para analizar materia orgánica en sedimentos. Anales del Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 11, 257–264.

Peng, Y., Tian, C., Chi, M. & Yang, H. (2019). Distribution of phosphorus species and their release risks in the surface sediments from different reaches along Yellow River. Environmental Science and Pollution Research, 26, 28202–28209. https://doi.org/10.1007/s11356-019-06026-9

Primo, E. & Carrasco, J. M. (1973). Química agrícola I. Suelos y fertilizantes. Alhambra S.A

Ramaswamy, V., Gaye, B., Shirodkar, P. V., Rao, P. S., Chivas, A. R., Wheeler, D. & Thwin, S. (2008). Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Marine Chemistry, 111, 137–150. https://doi.org/10.1016/j.marchem.2008.04.006

Reddy, K. R. & Delaune, R. D. (2008). Biogeochemistry of wetlands: Science and applications. CRC Press. https://doi.org/10.1201/9780203491454

Reddy, K. R., Kadlec, R. H., Flaig, E. & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: A review. Critical Reviews in Environmental Science and Technology, 29(1), 83-146. https://doi.org/10.1080/10643389991259182

Redfield, A. C., Ketchum, B. H. & Richards, F. A. (1963). The Influence of Organisms on the Composition of Sea-water. En M. N. Hill (Ed.), The sea (Vol. 2, pp. 26–77.). Harvard University Press.

Roa, P. & Berthois, L. (1975). Manual de sedimentología: métodos para el estudio de los sedimentos y no consolidados. Universidad Central de Venezuela.

Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37(7), 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460

Savenko, V. S. & Savenko, A. V. (2022). The Main Features of Phosphorus Transport in World Rivers. Water, 14, 16. https://doi.org/10.3390/w14010016

Shou, C-Y., Yue, F-J., Zhou, B., Fu, X., Ma, Z-N., Gong, Y-Q. & Chen, S-N. (2024). Chronic increasing nitrogen and endogenous phosphorus release from sediment threaten to the water quality in a semi-humid region reservoir. Science of the Total Environment, 931, 172924. https://doi.org/10.1016/j.scitotenv.2024.172924

Singh, P. & Yadav, B. (2025). Seasonal eutrophication in lentic small waterbodies: Understanding nutrientschlorophyll-a relationships and implications. Journal of Hazardous Materials Advances, 17, 100563. https://doi.org/10.1016/j.hazadv.2024.100563

Søndergaard, M., Jensen, J. P. & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiology, 506, 135–145. https://doi.org/10.1023/B:HYDR.0000008611.12704.dd

Strickland, J. D. H. & Parsons, T. R. (1972). A practical Handbook of seawaters Analysis (Bulletin 167, 2a ed.). Fisheries Research Board of Canada. http://dx.doi.org/10.25607/OBP-1791

Suman, A., Anuja P. K. & Adarsh, S. (2023). Development and prediction of a robust multivariate trophic state index for the classification of lentic water bodies. Results in Engineering, 20, 101586. https://doi.org/10.1016/j.rineng.2023.101586

Sutula, M., Bianchi, T. S. & Mckee, B. A. (2004). Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico. Limnology and Oceanography, 49(6), 2223–2235. https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lo.2004.49.6.2223

Tammeorg, O., Núremberg, G., Horppila, J., Haldna, M. & Niemistö, J. (2020). Redox-related release of phosphorus from sediments in large and shallow Lake Peipsi: Evidence from sediment studies and long-term monitoring data. Journal of Great Lakes Research, 46, 1595-1603. https://doi.org/10.1016/j.jglr.2020.08.023

Tian, J., Dong, G., Karthikeyan, R., Li, L. & Harmel, R. D. (2017). Phosphorus dynamics in long-term flooded, drained, and reflooded soils. Water, 9, 531. https://doi.org/10.3390/w9070531

Toledo Júnior, A. P., Talarico, M., Chinez, S. J. & Agudo, E. G. (1983). The application of simplified models for the evaluation of the process of eutrophication in tropical lakes and reservoirs. En Congresso Brasileiro de Engenharia Sanitária e Ambiental.

Tonello, M. S., Hebner, T. S., Sterner, R. W., Brovold, S., Tiecher, T., Bortoluzzi, E. C. & Merten, G. H. (2020). Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability. Journal of Soils and Sediments, 20, 1060-1073. https://doi.org/10.1007/s11368-019-02420-5

Treguer, P. & Le Corre, P. (1975). Manual d’analyses des sels nutritifs dans l’eau demer. Utilization de l’Auto-Analyzer II. Techicon R (2a ed.). LOC-UBO.

Tu, C., Jin, Z., Che, F., Cao, X., Song, X., Lu, C. & Huang, W. (2022). Characterization of phosphorus sorption and microbial community in lake sediments during overwinter and recruitment periods of cyanobacteria. Chemosphere, 307, 135777. https://doi.org/10.1016/j.chemosphere.2022.135777

Valderrama, J. C. (1981). The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 10, 109-122. https://doi.org/10.1016/0304-4203(81)90027-X

Vásquez, E. & Wilbert, W. (1992). The Orinoco: Physical, biological and cultural diversity of major tropical alluvial river. En P. Calow & G. E. Petts (Eds.), The Rivers Handbook (Vol. 1, pp. 448-471). Blackwell Scientific Publications.

Vogel, A. I. (1989). Textbook of Practical Organic Chemistry (5a ed.). Longman Scientific & Technical. https://acortar.link/5FYIyY

Walch, H., von der Kammer, F. & Hofmann, T. (2022). Freshwater suspended particulate matter - Key components and processes in floc formation and dynamics. Water Research, 220, 118655. https://doi.org/10.1016/j.watres.2022.118655

Walkley, A. & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003

Wan, J., Yuan., X., Han, L., Ye, H. & Yang, X. (2020). Characteristics and distribution of organic phosphorus fractions in the surface sediments of the inflow rivers around Hongze Lake, China. International Journal of Environmental Research and Public Health, 17, 648. https://doi.org/10.3390/ijerph17020648

Wang, L., Li, Q., Zou, H. & Zhou, Y. (2013). Phosphorus speciation in wetland sediments of Zhujiang (Pearl) River Estuary, China. Chinese Geographical Science, 23(5), 574–583. https://doi.org/10.1007/s11769-013-0627-4

Wang, Z., Huang, S. & Li, D. (2019). Decomposition of cyanobacterial bloom contributes to the formation and distribution of iron-bound phosphorus (Fe-P): Insight for cycling mechanism of internal phosphorus loading. Science of the Total Environment, 652, 696-708. https://doi.org/10.1016/j.scitotenv.2018.10.260

Wei, M-Z., Liu, J-W., Yang, Q-Z., Xue, A., Wu, H., Ni, J-R., Winter, L. R., Elimelech, M. & Zhao, H-Z. (2022). Denitrification mechanism in oxygen-rich aquatic environments through long-distance electron transfer. Clean Water, 5, 61. https://doi.org/10.1038/s41545-022-00205-x

Weibezahn, F. H., Alvarez, H. & Lewis, W. M. (Eds.). (1990). El Río Orinoco como Ecosistema. Editorial Galac SA. https://acortar.link/h7WKbb

Wetzel, R. G. (2001). Limnology: Lake and river ecosystems (3a ed.). Academic Press. https://acortar.link/AOjeNt

Wu, X., Wang, Y., Jiao, L., He, J., Zhou, H. & Hao, Z. (2025). Influencing factors of phosphorus mobility and retention in the sediment of three typical plateau lakes. Toxics, 13, 120. https://doi.org/10.3390/toxics13020120

Xiao, J., Chen, X., Zhou, L., Zhang, H., Hang, X. & Chen, Y. (2025). Nutrient distribution characteristics and eutrophication evaluation of coastal water near the Yellow river estuary, China. Water, 17, 2469. https://doi.org/10.3390/w17162469

Xu, X., Weng, N., Zhang, H., Van De Velde, S., Hermans, M., Wu, F. & Huo, S. (2023). Cable bacteria regulate sedimentary phosphorus release in freshwater sediments. Water Research, 242, 120218. https://doi.org/10.1016/j.watres.2023.120218

Yang, D., Wang, D., Chen, S., Ding, Y., Gao, Y., Tian, H., Cai, R., Yu, L., Deng, H. & Chen, Z. (2021). Denitrification in urban river sediment and the contribution to total nitrogen reduction. Ecological Indicators, 120, 106960. https://doi.org/10.1016/j.ecolind.2020.106960

Yu, W., Yang H., Chen, J., Liao, P., Chen, Q., Yang. Y. & Liu, Y. (2022). Organic phosphorus mineralization dominates the release of internal phosphorus in a macrophyte-dominated eutrophication lake. Frontiers in Environmental Sciences, 9, 812834. https://doi.org/10.3389/fenvs.2021.812834

Zhang, F., Xue, B., Cai, Y., Xu, H. & Zou, W. (2023). Utility of trophic state index in lakes and reservoirs in the Chinese Eastern Plains ecoregion: The key role of water depth. Ecological Indicators, 148, 110029. https://doi.org/10.1016/j.ecolind.2023.110029

Zhang, G. W., Jin, X., Zhu, X. & Shan, B. (2016). Characteristics and distribution of phosphorus in surface sediments of limnetic ecosystem in Eastern China. PLoS ONE, 11(6), e0156488. https://doi.org/10.1371/journal.pone.0156488

Zhang, Y., Song, C., Ji, L., Liu, Y., Xiao, J., Cao, X. & Zhou, Y. (2018). Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes. Science of the Total Environment, 627, 1294-1302. https://doi.org/10.1016/j.scitotenv.2018.01.327

Zhang, Y., Zhang, D., Li, Y., Han, X., Wang, X., Zhang, J., Gu, K., Sun, S., Liu, Q. & Lv, J. (2025). Spatiotemporal dynamics of nitrogen and phosphorus in the water and sediment from the source reservoir of the Mid-Route of China’s South-to-North Water Diversion Project. Water, 17, 1824. https://doi.org/10.3390/w17121824

Zheng, Z., Wang, X., Jin, J., Hao, J., Nie, Y., Chen, X., Mou, J., Emslie, S. D. & Liu, X. (2022). Fraction distribution and dynamic cycling of phosphorus in lacustrine sediment at Inexpressible Island, Antarctica. Environment international, 164, 107228. https://doi.org/10.1016/j.envint.2022.107228

Zhuo, T., He, L., Chai, B., Zhou, S., Wan, Q., Lei, X., Zhou, Z. & Chen, B. (2023). Micro-pressure promotes endogenous phosphorus release in a deep reservoir by favouring microbial phosphate mineralization and solubilisation coupled with sulphate reduction. Water Research, 245, 120647. https://doi.org/10.1016/j.watres.2023.120647

Published

2025-12-22

How to Cite

Márquez, A., & Acosta Núñez, J. (2025). Functional diagnosis of lotic and lentic water bodies using the Trophic-Ecological Valuation Index (IVT-Ecological): case study of the Orinoco river and Castillero lagoon, Venezuela. Boletin Instituto Del Mar Del Perú, 40(2), e444. https://doi.org/10.53554/boletin.v40i2.444