Assess chlorophyll-a levels along the peruvian coast during the summer of 2018: a comparative study between Modis-Aqua satellite data and in situ measurements
DOI:
https://doi.org/10.53554/boletin.v39i1.406Keywords:
Chlorophyll-a, MODIS-Aqua, Comparative analysis, SeaDAS, PeruAbstract
In this study, we investigated surface chlorophyll-a levels using in situ fluorometric techniques and the OC3M model applied
to MODIS Level 0 imagery from the Aqua satellite with a spatial resolution of 250 m, using SeaDAS 7.4 software. The analysis
was conducted during the 2018-0204 research cruise along the Peruvian coast. Comparing the chlorophyll-a measurements
at 72 stations during the cruise revealed a moderate correlation (R2 = 0.66). The Northern and Southern sub-areas showed
higher correlations (R2 = 0.77 and 0.76, respectively), while the Central area exhibited a lower correlation (R2 = 0.42) due to temporal variability and cloud cover. The RMSE of the MODIS data was 35%, indicating good reliability, although the BIAS values indicate a slight underestimation in the Northern and Central sub-areas and an overestimation in the Southern area.
Our scatter plot analysis demonstrated increased dispersion between measurements as pigment concentration rose. Overall, the criteria used in this study for water type classification were validated through statistical analysis.
Downloads
Alternative Metrics
Metrics
References
Antoine, D., André, J-M. & Morel, A. (1996). Oceanic primary production. 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Glob. Biogeochem. Cycles, 10(1), 57–69. https://doi.org/10.1029/95GB02832
Babin, M., Arrigo, K., Bélanger, S. & Forget, M. H. (Eds.). (2015). Ocean Colour Remote Sensing in Polar Seas (Reporte IOCCG nº 16). International Ocean Colour Coordinating Group (IOCCG). http://dx.doi.org/10.25607/OBP-107
Bakun, A. & Nelson, C. S. (1991). The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions. Journal of Physical Oceanography, 21(12), 1815-1834. https://doi.org/10.1175/1520-0485(1991)021%3C1815:TSCOWS%3E2.0.CO;2
Barbosa, C. C. F., Novo, E. M. L. M. & Martinez J. M. (2009). Remote sensing of the water proprieties of the Amazon floodplain lakes: the time delay effects between in-situ and satellite data acquisition on model accuracy. In Proceedings: 33rd International Symposium on Remote Sensing of Environment: Sustaining the Millennium Development Goals, May 4-9, 2009 Stresa, Italy (pp. 1-4). International Center for Remote Sensing of Environment.
Bastidas, M. & Rodríguez-Rubio, E. (2006). Validación de la concentración de clorofila-a generada por el sensor MODIS-Aqua con datos in situ en el Pacifico colombiano. Revista Colombiana de Física, 38(2), 774-777.
Bastidas-Salamanca, M. L., Rodríguez-Rubio, E. & Ortiz Galvis, J. R. (2006). Obtención y validación de clorofila en la cuenca pacífica colombiana a partir de imágenes satelitales. Boletín Científico CCCP, (13), 33-40. https://doi.org/10.26640/01213423.13.33_40
Campbell, J. W. & O’Reilly, J. E. (2006). Metrics for Quantifying the Uncertainty in a Chlorophyll Algorithm: Explicit Equations and Examples using the OC4.v4 Algorithm and NOMAD Data. In Report from the Ocean Color Bio-optical Algorithm Mini-workshop (Vol. 4, pp. 1-15). https://oceancolor.gsfc.nasa.gov/meetings/ocbam/PerformanceMetrics.pdf
Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P. & Csirke, J. (2008). The northern Humboldt Current System: brief history, present status and a view towards the future. Progress in Oceanography 79(2-4), 95-105. https://doi.org/10.1016/j.pocean.2008.10.012
Feng, L. & Hu, C. (2016). Cloud Adjacency Effects on Top-ofatmosphere Radiance and Ocean Color Data Products: A Statistical Assessment. Remote Sensing of Environment, 174, 301-313. https://doi.org/10.1016/j.rse.2015.12.02
Gordon, H. R. & Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A Preliminary Algorithm. Appl. Opt., 33(3). 443-452. https://doi.org/10.1364/AO.33.000443
Gregg, W. W. & Casey, N. W. (2004). Global and Regional Evaluation of the SeaWiFS Chlorophyll Data Set. Remote Sensing of Environment, 93(4), 463-479. https://doi.org/10.1016/j.rse.2003.12.012
Kirk, J. T. O. (2013). Light and photosynthesis in aquatic ecosystems (3° ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139168212
Knap, A., Michaels, A., Close, A., Ducklow, H. & Dickson, A. (Eds.). (1994). Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements (JGOFS Report Nr. 19, Reprint of the IOC Manuals and Guides No. 29, UNESCO 1994). JGOFS Report. https://epic.awi.de/id/eprint/17559/1/Kna1996a.pdf
Lee, Z. P. (Ed.). (2006). Remote Sensing of Inherent optical properties: Fundamentals, tests of algorithms, and applications (Reporte IOCCG nº 5). International Ocean Colour Coordinating Group (IOCCG). http://dx.doi.org/10.25607/OBP-96
Mckinna, L., Cetinic, I., Chase, A. & Werdell, P. (2019). Approach for propagating radiometric data uncertainties through Nasa ocean color algorithms. Front. Earth Sci., 176(7), 1-17. https://doi.org/10.3389/feart.2019.00176
Modis Characterization Support Team [MCST]. (2006). MODIS Level 1B Product User’s Guide (Memorando Interno n° M1054). NASA/Goddard Space Flight Center. https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054.pdf
Moore, T. S., Campbell, J. W. & Dowell, M. D. (2009). A class based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sens. Envirom., 113(11), 2424-2330. https://doi.org/10.1016/J.RSE.2009.07.016
Morel, A. & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22(4), 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
NASA. (2010). Ocean color chlorophyll (OC) v6. https://oceancolor.gsfc.nasa.gov/reprocessing/r2009/ocv6/
Nishihama, G., Wolfe, R., Solomon, D., Patt, F., Blanchette, J., Fleig, A. & Masouka, E. (1997). MODIS Level 1A Earth Location: Algorithm Theoretical Basis Document Version 3.0. MODIS Science Data Support Team. https://eospso.nasa.gov/sites/default/files/atbd/atbd_mod28_v3.pdf
O’Reilly, J. E., Maritorena, S., Siegel, D., Carder, K., Garver, S. A., Kahru, M. & McClain, C. (1998). Ocean Color Chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(C11), 24937-24953. https://doi.org/10.1029/98JC02160
Pinkerton, M. H., Lavender, S. J. & Aitken, J. (2003). Validation of SeaWiFS ocean color satellite data using a moored databuoy. Journal of Geophysical Research. 108(C5), 1-9. https://doi.org/10.1029/2002JC001337
Qian, S. E. (Ed.). (2016). Optical Payloads for Space Missions. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118945179
Quispe, D., Calienes, R., Tam, J., Graco, M., Ledesma, J., Flores, G., Correa, D. & Quispe, C. (2010). Análisis Comparativo entre Clorofila-a Satelital e in situ en el Ecosistema de Afloramiento Peruano, entre 1998-2007. Ecología Aplicada 9(2), 151-159. http://www.scielo.org.pe/pdf/ecol/v9n2/a10v9n2.pdf
Somoza, R. D., Kampel, M. & Buss de Souza, R. (2007). Variabilidad de la concentración de clorofila a en las aguas adyacentes a la plataforma cubana y su relación con las pesquerías de langosta (Panulirus argus). En Anais XIII Simposio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 21-26 abril 2007 (pp. 4699-4706). Instituto Nacional de Pesquisas Espaciais (INPE).
Turpie, K. R., Robinson, W. D., Franz, B. A., Eplee, R. E., Meister, G., Fireman, G. F, Patt, F. S., Barnes, R. S. & McClain, C. R. (2012). Suomi NPP VIIRS Ocean Color Data Product Early Mission Assessment. Earth Observing Systems XVII, 8510, 85101H-1-85101H-16. https://doi.org/10.1117/12.931113
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Boletin Instituto del Mar del Perú
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.